面向可解释机器学习系统的设计与评估框架

Sina Mohseni
{"title":"面向可解释机器学习系统的设计与评估框架","authors":"Sina Mohseni","doi":"10.1145/3306618.3314322","DOIUrl":null,"url":null,"abstract":"The need for interpretable and accountable intelligent system gets sensible as artificial intelligence plays more role in human life. Explainable artificial intelligence systems can be a solution by self-explaining the reasoning behind the decisions and predictions of the intelligent system. My research supports the design and evaluation methods and interpretable machine learning systems and leverages knowledge and experience in the fields of machine learning, human-computer interactions, and data visualization. My research objectives are to present a design and evaluation framework for explainable artificial intelligence systems, propose new methods and metrics to better evaluate the benefits of transparent machine learning systems, and apply interpretability methods for model reliability verification.","PeriodicalId":418125,"journal":{"name":"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Toward Design and Evaluation Framework for Interpretable Machine Learning Systems\",\"authors\":\"Sina Mohseni\",\"doi\":\"10.1145/3306618.3314322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for interpretable and accountable intelligent system gets sensible as artificial intelligence plays more role in human life. Explainable artificial intelligence systems can be a solution by self-explaining the reasoning behind the decisions and predictions of the intelligent system. My research supports the design and evaluation methods and interpretable machine learning systems and leverages knowledge and experience in the fields of machine learning, human-computer interactions, and data visualization. My research objectives are to present a design and evaluation framework for explainable artificial intelligence systems, propose new methods and metrics to better evaluate the benefits of transparent machine learning systems, and apply interpretability methods for model reliability verification.\",\"PeriodicalId\":418125,\"journal\":{\"name\":\"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3306618.3314322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3306618.3314322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着人工智能在人类生活中扮演越来越重要的角色,对可解释、可问责的智能系统的需求变得越来越明显。可解释的人工智能系统可以通过自我解释智能系统决策和预测背后的推理来解决问题。我的研究支持设计和评估方法以及可解释的机器学习系统,并利用机器学习,人机交互和数据可视化领域的知识和经验。我的研究目标是为可解释的人工智能系统提供一个设计和评估框架,提出新的方法和指标来更好地评估透明机器学习系统的好处,并应用可解释性方法进行模型可靠性验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Design and Evaluation Framework for Interpretable Machine Learning Systems
The need for interpretable and accountable intelligent system gets sensible as artificial intelligence plays more role in human life. Explainable artificial intelligence systems can be a solution by self-explaining the reasoning behind the decisions and predictions of the intelligent system. My research supports the design and evaluation methods and interpretable machine learning systems and leverages knowledge and experience in the fields of machine learning, human-computer interactions, and data visualization. My research objectives are to present a design and evaluation framework for explainable artificial intelligence systems, propose new methods and metrics to better evaluate the benefits of transparent machine learning systems, and apply interpretability methods for model reliability verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信