{"title":"具有连续关节的缆索驱动漂浮机械臂的设计","authors":"Zhonghao Wu, Marco Cederle, E. Giani, Kai Xu","doi":"10.1109/RCAR47638.2019.9044130","DOIUrl":null,"url":null,"abstract":"Long-reach manipulator shows potentials in inspection, search and rescue. However, the reach of such a manipulator is often limited, due to fact that the distal structures become payloads of the proximal joints. This research hence focuses on a proof-of-concept study of a slim long-reach robotic arm designed with continuum joints and floating links. A float link and a continuum joint constitute a module that is weightless due to buoyancy. The reach hence becomes unlimited in theory. The actuation of each joint is decoupled via a transmission arrangement, providing a simple kinematic model no matter how many robotic modules are used. Each floating link is composed of a from-the-shelf helium-filled Mylar balloon that is caged by acrylic rings. Each of the two-degree-of-freedom continuum joints is made from a super-elastic nitinol (nickel-titanium alloy) rod and actuated by three cables pulled by three stepper motors. Preliminary experimental results on this constructed 3-meter prototype show that the floating robotic arm can move with acceptable accuracy in still air, validating the proposed concept.","PeriodicalId":314270,"journal":{"name":"2019 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a Cable Driven Floating Robotic Arm with Continuum Joints\",\"authors\":\"Zhonghao Wu, Marco Cederle, E. Giani, Kai Xu\",\"doi\":\"10.1109/RCAR47638.2019.9044130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-reach manipulator shows potentials in inspection, search and rescue. However, the reach of such a manipulator is often limited, due to fact that the distal structures become payloads of the proximal joints. This research hence focuses on a proof-of-concept study of a slim long-reach robotic arm designed with continuum joints and floating links. A float link and a continuum joint constitute a module that is weightless due to buoyancy. The reach hence becomes unlimited in theory. The actuation of each joint is decoupled via a transmission arrangement, providing a simple kinematic model no matter how many robotic modules are used. Each floating link is composed of a from-the-shelf helium-filled Mylar balloon that is caged by acrylic rings. Each of the two-degree-of-freedom continuum joints is made from a super-elastic nitinol (nickel-titanium alloy) rod and actuated by three cables pulled by three stepper motors. Preliminary experimental results on this constructed 3-meter prototype show that the floating robotic arm can move with acceptable accuracy in still air, validating the proposed concept.\",\"PeriodicalId\":314270,\"journal\":{\"name\":\"2019 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCAR47638.2019.9044130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR47638.2019.9044130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a Cable Driven Floating Robotic Arm with Continuum Joints
Long-reach manipulator shows potentials in inspection, search and rescue. However, the reach of such a manipulator is often limited, due to fact that the distal structures become payloads of the proximal joints. This research hence focuses on a proof-of-concept study of a slim long-reach robotic arm designed with continuum joints and floating links. A float link and a continuum joint constitute a module that is weightless due to buoyancy. The reach hence becomes unlimited in theory. The actuation of each joint is decoupled via a transmission arrangement, providing a simple kinematic model no matter how many robotic modules are used. Each floating link is composed of a from-the-shelf helium-filled Mylar balloon that is caged by acrylic rings. Each of the two-degree-of-freedom continuum joints is made from a super-elastic nitinol (nickel-titanium alloy) rod and actuated by three cables pulled by three stepper motors. Preliminary experimental results on this constructed 3-meter prototype show that the floating robotic arm can move with acceptable accuracy in still air, validating the proposed concept.