{"title":"有意义和无意义的视觉对象的分类:图相似度方法","authors":"A. Mheich, Mahmoud Hassan, F. Wendling","doi":"10.1109/ICABME.2017.8167542","DOIUrl":null,"url":null,"abstract":"Cognition involves dynamic reconfiguration of functional brain networks at sub-second time scale. A precise tracking of these reconfigurations to categorize visual objects remains elusive. Here, we use dense electroencephalography (EEG) data recorded during naming meaningful (tools, animals…) and scrambled objects from 20 healthy subjects. We combine technique for identifying functional brain networks and recently developed algorithm for estimating networks similarity to discriminate between the two categories. First, we showed that dynamic networks of both categories can be segmented into several brain network states (times windows with consistent brain networks) reflecting sequential information processing from object representation to reaction time. Second, using a network similarity algorithm, results showed high intra-category and very low inter-category values. An average accuracy of 76% was obtained at different brain network states.","PeriodicalId":426559,"journal":{"name":"2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of meaningful and meaningless visual objects: A graph similarity approach\",\"authors\":\"A. Mheich, Mahmoud Hassan, F. Wendling\",\"doi\":\"10.1109/ICABME.2017.8167542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognition involves dynamic reconfiguration of functional brain networks at sub-second time scale. A precise tracking of these reconfigurations to categorize visual objects remains elusive. Here, we use dense electroencephalography (EEG) data recorded during naming meaningful (tools, animals…) and scrambled objects from 20 healthy subjects. We combine technique for identifying functional brain networks and recently developed algorithm for estimating networks similarity to discriminate between the two categories. First, we showed that dynamic networks of both categories can be segmented into several brain network states (times windows with consistent brain networks) reflecting sequential information processing from object representation to reaction time. Second, using a network similarity algorithm, results showed high intra-category and very low inter-category values. An average accuracy of 76% was obtained at different brain network states.\",\"PeriodicalId\":426559,\"journal\":{\"name\":\"2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICABME.2017.8167542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICABME.2017.8167542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of meaningful and meaningless visual objects: A graph similarity approach
Cognition involves dynamic reconfiguration of functional brain networks at sub-second time scale. A precise tracking of these reconfigurations to categorize visual objects remains elusive. Here, we use dense electroencephalography (EEG) data recorded during naming meaningful (tools, animals…) and scrambled objects from 20 healthy subjects. We combine technique for identifying functional brain networks and recently developed algorithm for estimating networks similarity to discriminate between the two categories. First, we showed that dynamic networks of both categories can be segmented into several brain network states (times windows with consistent brain networks) reflecting sequential information processing from object representation to reaction time. Second, using a network similarity algorithm, results showed high intra-category and very low inter-category values. An average accuracy of 76% was obtained at different brain network states.