基于复杂Wishart分布的多视点极化SAR数据分类

J. Lee, M. Grunes
{"title":"基于复杂Wishart分布的多视点极化SAR数据分类","authors":"J. Lee, M. Grunes","doi":"10.1109/NTC.1992.267879","DOIUrl":null,"url":null,"abstract":"An optimal feature classification scheme is developed for multilook polarimetric SAR (synthetic aperture radar) imagery based on a multivariate complex Wishart distribution. The purpose is to identify various ground covers, such as forest, vegetation, city block, ocean, and sea ice type. Multilook polarimetric SAR data can be represented either in Stoke's matrix form or in complex covariance matrix form. The latter has a complex Wishart distribution. A simple but effective classifier is then developed using the complete information of the complex covariance. This algorithm is further extended to classification using multifrequency polarimetric data. A procedure for assessing the classification errors is also developed using a Monte Carlo simulation. The effectiveness of this algorithm is demonstrated with NASA/JPL (Jet Propulsion Laboratory) P-, L-, and C-band polarimetric SAR data.<<ETX>>","PeriodicalId":448154,"journal":{"name":"[Proceedings] NTC-92: National Telesystems Conference","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Classification of multi-look polarimetric SAR data based on complex Wishart distribution\",\"authors\":\"J. Lee, M. Grunes\",\"doi\":\"10.1109/NTC.1992.267879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optimal feature classification scheme is developed for multilook polarimetric SAR (synthetic aperture radar) imagery based on a multivariate complex Wishart distribution. The purpose is to identify various ground covers, such as forest, vegetation, city block, ocean, and sea ice type. Multilook polarimetric SAR data can be represented either in Stoke's matrix form or in complex covariance matrix form. The latter has a complex Wishart distribution. A simple but effective classifier is then developed using the complete information of the complex covariance. This algorithm is further extended to classification using multifrequency polarimetric data. A procedure for assessing the classification errors is also developed using a Monte Carlo simulation. The effectiveness of this algorithm is demonstrated with NASA/JPL (Jet Propulsion Laboratory) P-, L-, and C-band polarimetric SAR data.<<ETX>>\",\"PeriodicalId\":448154,\"journal\":{\"name\":\"[Proceedings] NTC-92: National Telesystems Conference\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] NTC-92: National Telesystems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NTC.1992.267879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] NTC-92: National Telesystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTC.1992.267879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

提出了一种基于多元复Wishart分布的多视极化SAR (synthetic aperture radar)图像最优特征分类方案。目的是识别各种地面覆盖,如森林、植被、城市街区、海洋和海冰类型。多方位极化SAR数据既可以用斯托克矩阵形式表示,也可以用复协方差矩阵形式表示。后者具有复杂的Wishart分布。然后利用复协方差的完整信息开发了一个简单而有效的分类器。将该算法进一步推广到多频极化数据分类中。利用蒙特卡罗模拟,还开发了一种评估分类误差的程序。通过NASA/JPL(喷气推进实验室)的P波段、L波段和c波段极化SAR数据验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of multi-look polarimetric SAR data based on complex Wishart distribution
An optimal feature classification scheme is developed for multilook polarimetric SAR (synthetic aperture radar) imagery based on a multivariate complex Wishart distribution. The purpose is to identify various ground covers, such as forest, vegetation, city block, ocean, and sea ice type. Multilook polarimetric SAR data can be represented either in Stoke's matrix form or in complex covariance matrix form. The latter has a complex Wishart distribution. A simple but effective classifier is then developed using the complete information of the complex covariance. This algorithm is further extended to classification using multifrequency polarimetric data. A procedure for assessing the classification errors is also developed using a Monte Carlo simulation. The effectiveness of this algorithm is demonstrated with NASA/JPL (Jet Propulsion Laboratory) P-, L-, and C-band polarimetric SAR data.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信