私有同步消息协议的最新进展

Akinori Kawachi
{"title":"私有同步消息协议的最新进展","authors":"Akinori Kawachi","doi":"10.1109/ITW48936.2021.9611477","DOIUrl":null,"url":null,"abstract":"The private simultaneous messages (PSM) model is a simple variant of the secure multiparty computation (MPC). In the k-party PSM model, each party $P_{\\imath}$ has a private input $x_{i}$ for $i=1, \\ldots, k$. For a function f, each $\\lt p\\gt P_{i}$ encrypts $x_{i}$ into a message $m_{i}$ with a random string r shared among $\\lt p\\gt P_{1}, \\ldots, P_{k}$, and sends $m_{i}$ to the referee $R. R$ computes $f\\left(x_{1}, \\ldots, x_{k}\\right)$ from their respective messages $m_{1}, \\ldots, m_{k}$. Then, R learns nothing from $m_{1}, \\ldots, m_{k}$ except for the output value $f\\left(x_{1}, \\ldots, x_{k}\\right)$. This simple model provides interesting cryptographic applications and is essential for understanding the intrinsic costs (e.g., of communication $\\left|m_{1}\\right|+\\ldots+\\left|m_{k}\\right|$ and randomness $|r|$) to achieve MPC. This study surveys recent results associated with the PSM and closely related models.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recent Progress in Private Simultaneous Messages Protocols\",\"authors\":\"Akinori Kawachi\",\"doi\":\"10.1109/ITW48936.2021.9611477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The private simultaneous messages (PSM) model is a simple variant of the secure multiparty computation (MPC). In the k-party PSM model, each party $P_{\\\\imath}$ has a private input $x_{i}$ for $i=1, \\\\ldots, k$. For a function f, each $\\\\lt p\\\\gt P_{i}$ encrypts $x_{i}$ into a message $m_{i}$ with a random string r shared among $\\\\lt p\\\\gt P_{1}, \\\\ldots, P_{k}$, and sends $m_{i}$ to the referee $R. R$ computes $f\\\\left(x_{1}, \\\\ldots, x_{k}\\\\right)$ from their respective messages $m_{1}, \\\\ldots, m_{k}$. Then, R learns nothing from $m_{1}, \\\\ldots, m_{k}$ except for the output value $f\\\\left(x_{1}, \\\\ldots, x_{k}\\\\right)$. This simple model provides interesting cryptographic applications and is essential for understanding the intrinsic costs (e.g., of communication $\\\\left|m_{1}\\\\right|+\\\\ldots+\\\\left|m_{k}\\\\right|$ and randomness $|r|$) to achieve MPC. This study surveys recent results associated with the PSM and closely related models.\",\"PeriodicalId\":325229,\"journal\":{\"name\":\"2021 IEEE Information Theory Workshop (ITW)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW48936.2021.9611477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

私有同步消息(PSM)模型是安全多方计算(MPC)的一种简单变体。在k-party PSM模型中,对于$i=1, \ldots, k$,每一方$P_{\imath}$都有一个私有输入$x_{i}$。对于函数f,每个$\lt p\gt P_{i}$将$x_{i}$加密为消息$m_{i}$,其中包含$\lt p\gt P_{1}, \ldots, P_{k}$共享的随机字符串r,并将$m_{i}$发送给裁判$ r。R$从它们各自的消息$m_{1}, \ldots, x_{k}\right计算$f\left(x_{1}, \ldots, m_{k}$)$。然后,R从$m_{1}, \ldots, m_{k}$中学不到任何东西,除了输出值$f\left(x_{1}, \ldots, x_{k}\right)$。这个简单的模型提供了有趣的密码学应用,对于理解实现MPC的内在成本(例如,通信$\left|m_{1}\right|+\ldots+\left|m_{k}\right|$和随机性$|r|$)至关重要。本研究调查了与PSM和密切相关的模型相关的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Progress in Private Simultaneous Messages Protocols
The private simultaneous messages (PSM) model is a simple variant of the secure multiparty computation (MPC). In the k-party PSM model, each party $P_{\imath}$ has a private input $x_{i}$ for $i=1, \ldots, k$. For a function f, each $\lt p\gt P_{i}$ encrypts $x_{i}$ into a message $m_{i}$ with a random string r shared among $\lt p\gt P_{1}, \ldots, P_{k}$, and sends $m_{i}$ to the referee $R. R$ computes $f\left(x_{1}, \ldots, x_{k}\right)$ from their respective messages $m_{1}, \ldots, m_{k}$. Then, R learns nothing from $m_{1}, \ldots, m_{k}$ except for the output value $f\left(x_{1}, \ldots, x_{k}\right)$. This simple model provides interesting cryptographic applications and is essential for understanding the intrinsic costs (e.g., of communication $\left|m_{1}\right|+\ldots+\left|m_{k}\right|$ and randomness $|r|$) to achieve MPC. This study surveys recent results associated with the PSM and closely related models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信