3D人物运动创作从时间稀疏的照片

Jen-Chun Lin, Wen-Li Wei
{"title":"3D人物运动创作从时间稀疏的照片","authors":"Jen-Chun Lin, Wen-Li Wei","doi":"10.1145/3588028.3603656","DOIUrl":null,"url":null,"abstract":"This paper presents a neural network-based learning approach that enables seamless generation of 3D human motion in-between photos to accelerate the process of 3D character motion authoring. This new approach allows users to freely edit (replace, insert, or delete) input photos and specify the transition length to generate a kinematically coherent sequence of 3D human poses and shapes in-between the given photos. We demonstrate through qualitative and subjective evaluations that our approach is capable of generating high-fidelity, natural 3D pose and shape transitions.","PeriodicalId":113397,"journal":{"name":"ACM SIGGRAPH 2023 Posters","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Character Motion Authoring From Temporally-Sparse Photos\",\"authors\":\"Jen-Chun Lin, Wen-Li Wei\",\"doi\":\"10.1145/3588028.3603656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a neural network-based learning approach that enables seamless generation of 3D human motion in-between photos to accelerate the process of 3D character motion authoring. This new approach allows users to freely edit (replace, insert, or delete) input photos and specify the transition length to generate a kinematically coherent sequence of 3D human poses and shapes in-between the given photos. We demonstrate through qualitative and subjective evaluations that our approach is capable of generating high-fidelity, natural 3D pose and shape transitions.\",\"PeriodicalId\":113397,\"journal\":{\"name\":\"ACM SIGGRAPH 2023 Posters\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2023 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3588028.3603656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2023 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3588028.3603656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于神经网络的学习方法,该方法可以无缝地生成3D人体运动之间的照片,以加速3D角色运动创作的过程。这种新方法允许用户自由编辑(替换、插入或删除)输入照片,并指定过渡长度,以在给定照片之间生成3D人体姿势和形状的运动学连贯序列。我们通过定性和主观评估证明,我们的方法能够产生高保真度,自然的3D姿势和形状转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Character Motion Authoring From Temporally-Sparse Photos
This paper presents a neural network-based learning approach that enables seamless generation of 3D human motion in-between photos to accelerate the process of 3D character motion authoring. This new approach allows users to freely edit (replace, insert, or delete) input photos and specify the transition length to generate a kinematically coherent sequence of 3D human poses and shapes in-between the given photos. We demonstrate through qualitative and subjective evaluations that our approach is capable of generating high-fidelity, natural 3D pose and shape transitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信