基于l1 -范数的LDA快速人体检测

Xiao Pu, Xiaoshuang Shi, Zhenhua Guo, Jie Zhou
{"title":"基于l1 -范数的LDA快速人体检测","authors":"Xiao Pu, Xiaoshuang Shi, Zhenhua Guo, Jie Zhou","doi":"10.1109/ICSS.2014.31","DOIUrl":null,"url":null,"abstract":"Fast detection is of vital importance in human detection sometimes. Considering the high dimensions of the features widely used in human detection, it will severely slow the detection speed. Therefore, in this paper, we try to find a way by using Linear Discriminant Analysis(LDA) via L1-norm regularization to solve this problem. It reduces the dimension of feature from 3780 to 150 before classification, and gets a more fast speed then SVM and LDA, while keeps a competitive accuracy.","PeriodicalId":206490,"journal":{"name":"2014 International Conference on Service Sciences","volume":"46 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Human Detection Using LDA via L1-Norm\",\"authors\":\"Xiao Pu, Xiaoshuang Shi, Zhenhua Guo, Jie Zhou\",\"doi\":\"10.1109/ICSS.2014.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast detection is of vital importance in human detection sometimes. Considering the high dimensions of the features widely used in human detection, it will severely slow the detection speed. Therefore, in this paper, we try to find a way by using Linear Discriminant Analysis(LDA) via L1-norm regularization to solve this problem. It reduces the dimension of feature from 3780 to 150 before classification, and gets a more fast speed then SVM and LDA, while keeps a competitive accuracy.\",\"PeriodicalId\":206490,\"journal\":{\"name\":\"2014 International Conference on Service Sciences\",\"volume\":\"46 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Service Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSS.2014.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Service Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSS.2014.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

快速检测有时在人体检测中至关重要。考虑到人类检测中广泛使用的高维特征,这将严重降低检测速度。因此,本文试图通过l1范数正则化的线性判别分析(LDA)来解决这一问题。该方法在分类前将特征维数从3780降至150,得到了比SVM和LDA更快的速度,同时保持了相当的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Human Detection Using LDA via L1-Norm
Fast detection is of vital importance in human detection sometimes. Considering the high dimensions of the features widely used in human detection, it will severely slow the detection speed. Therefore, in this paper, we try to find a way by using Linear Discriminant Analysis(LDA) via L1-norm regularization to solve this problem. It reduces the dimension of feature from 3780 to 150 before classification, and gets a more fast speed then SVM and LDA, while keeps a competitive accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信