用于虹膜分割的贝叶斯Chan-Vese分割

Gradi Yanto, M. Jaward, N. Kamrani
{"title":"用于虹膜分割的贝叶斯Chan-Vese分割","authors":"Gradi Yanto, M. Jaward, N. Kamrani","doi":"10.1109/VCIP.2013.6706440","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new model as an improvement of active contours without edges model by Chan-Vese to perform iris segmentation. Our proposed algorithm formulates the energy function defined by Chan-Vese as a Bayesian optimization problem. The prior probability is incorporated into the energy function; the prior information of the curve can be integrated with current information provided by likelihood calculation. In order to obtain the desired curve, Maximum a Posteriori (MAP) probability is minimized. Experimental results show that our proposed model gives a more robust performance in iris segmentation compared to the original Chan-Vese model.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bayesian Chan-Vese segmentation for iris segmentation\",\"authors\":\"Gradi Yanto, M. Jaward, N. Kamrani\",\"doi\":\"10.1109/VCIP.2013.6706440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new model as an improvement of active contours without edges model by Chan-Vese to perform iris segmentation. Our proposed algorithm formulates the energy function defined by Chan-Vese as a Bayesian optimization problem. The prior probability is incorporated into the energy function; the prior information of the curve can be integrated with current information provided by likelihood calculation. In order to obtain the desired curve, Maximum a Posteriori (MAP) probability is minimized. Experimental results show that our proposed model gives a more robust performance in iris segmentation compared to the original Chan-Vese model.\",\"PeriodicalId\":407080,\"journal\":{\"name\":\"2013 Visual Communications and Image Processing (VCIP)\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2013.6706440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的虹膜分割模型,作为Chan-Vese无边缘活动轮廓模型的改进。我们提出的算法将Chan-Vese定义的能量函数表述为贝叶斯优化问题。将先验概率纳入能量函数;曲线的先验信息可以与由似然计算提供的当前信息相结合。为了得到期望的曲线,最大后验概率(MAP)被最小化。实验结果表明,与原有的Chan-Vese模型相比,我们提出的模型在虹膜分割方面具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Chan-Vese segmentation for iris segmentation
In this paper, we propose a new model as an improvement of active contours without edges model by Chan-Vese to perform iris segmentation. Our proposed algorithm formulates the energy function defined by Chan-Vese as a Bayesian optimization problem. The prior probability is incorporated into the energy function; the prior information of the curve can be integrated with current information provided by likelihood calculation. In order to obtain the desired curve, Maximum a Posteriori (MAP) probability is minimized. Experimental results show that our proposed model gives a more robust performance in iris segmentation compared to the original Chan-Vese model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信