基于注意的槽填充语义启动

NEWS@ACL Pub Date : 2018-07-01 DOI:10.18653/v1/W18-2404
Jiewen Wu, Rafael E. Banchs, L. F. D’Haro, Pavitra Krishnaswamy, Nancy F. Chen
{"title":"基于注意的槽填充语义启动","authors":"Jiewen Wu, Rafael E. Banchs, L. F. D’Haro, Pavitra Krishnaswamy, Nancy F. Chen","doi":"10.18653/v1/W18-2404","DOIUrl":null,"url":null,"abstract":"The problem of sequence labelling in language understanding would benefit from approaches inspired by semantic priming phenomena. We propose that an attention-based RNN architecture can be used to simulate semantic priming for sequence labelling. Specifically, we employ pre-trained word embeddings to characterize the semantic relationship between utterances and labels. We validate the approach using varying sizes of the ATIS and MEDIA datasets, and show up to 1.4-1.9% improvement in F1 score. The developed framework can enable more explainable and generalizable spoken language understanding systems.","PeriodicalId":189654,"journal":{"name":"NEWS@ACL","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Attention-based Semantic Priming for Slot-filling\",\"authors\":\"Jiewen Wu, Rafael E. Banchs, L. F. D’Haro, Pavitra Krishnaswamy, Nancy F. Chen\",\"doi\":\"10.18653/v1/W18-2404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of sequence labelling in language understanding would benefit from approaches inspired by semantic priming phenomena. We propose that an attention-based RNN architecture can be used to simulate semantic priming for sequence labelling. Specifically, we employ pre-trained word embeddings to characterize the semantic relationship between utterances and labels. We validate the approach using varying sizes of the ATIS and MEDIA datasets, and show up to 1.4-1.9% improvement in F1 score. The developed framework can enable more explainable and generalizable spoken language understanding systems.\",\"PeriodicalId\":189654,\"journal\":{\"name\":\"NEWS@ACL\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NEWS@ACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W18-2404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-2404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

语言理解中的序列标记问题将受益于语义启动现象启发的方法。我们提出一个基于注意力的RNN架构可以用来模拟序列标记的语义启动。具体来说,我们使用预训练的词嵌入来表征话语和标签之间的语义关系。我们使用不同大小的ATIS和MEDIA数据集验证了该方法,并显示F1分数提高了1.4-1.9%。开发的框架可以使口语理解系统更具可解释性和概括性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention-based Semantic Priming for Slot-filling
The problem of sequence labelling in language understanding would benefit from approaches inspired by semantic priming phenomena. We propose that an attention-based RNN architecture can be used to simulate semantic priming for sequence labelling. Specifically, we employ pre-trained word embeddings to characterize the semantic relationship between utterances and labels. We validate the approach using varying sizes of the ATIS and MEDIA datasets, and show up to 1.4-1.9% improvement in F1 score. The developed framework can enable more explainable and generalizable spoken language understanding systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信