关于算术变量的Bertini正则定理

Xiaozong Wang
{"title":"关于算术变量的Bertini正则定理","authors":"Xiaozong Wang","doi":"10.5802/jep.191","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{X}$ be a regular projective arithmetic variety equipped with an ample hermitian line bundle $\\overline{\\mathcal{L}}$. We prove that the proportion of global sections $\\sigma$ with $\\left\\lVert \\sigma \\right\\rVert_{\\infty}<1$ of $\\overline{\\mathcal{L}}^{\\otimes d}$ whose divisor does not have a singular point on the fiber $\\mathcal{X}_p$ over any prime $p<e^{\\varepsilon d}$ tends to $\\zeta_{\\mathcal{X}}(1+\\dim \\mathcal{X})^{-1}$ as $d\\rightarrow \\infty$.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Bertini regularity theorem for arithmetic varieties\",\"authors\":\"Xiaozong Wang\",\"doi\":\"10.5802/jep.191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{X}$ be a regular projective arithmetic variety equipped with an ample hermitian line bundle $\\\\overline{\\\\mathcal{L}}$. We prove that the proportion of global sections $\\\\sigma$ with $\\\\left\\\\lVert \\\\sigma \\\\right\\\\rVert_{\\\\infty}<1$ of $\\\\overline{\\\\mathcal{L}}^{\\\\otimes d}$ whose divisor does not have a singular point on the fiber $\\\\mathcal{X}_p$ over any prime $p<e^{\\\\varepsilon d}$ tends to $\\\\zeta_{\\\\mathcal{X}}(1+\\\\dim \\\\mathcal{X})^{-1}$ as $d\\\\rightarrow \\\\infty$.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

让 $\mathcal{X}$ 是一个正则的射影算术变异体,配有一个充足的厄米线束 $\overline{\mathcal{L}}$. 我们证明了全局截面的比例 $\sigma$ 有 $\left\lVert \sigma \right\rVert_{\infty}<1$ 的 $\overline{\mathcal{L}}^{\otimes d}$ 谁的除数在纤维上没有奇点 $\mathcal{X}_p$ 除以任意质数 $p本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
On the Bertini regularity theorem for arithmetic varieties
Let $\mathcal{X}$ be a regular projective arithmetic variety equipped with an ample hermitian line bundle $\overline{\mathcal{L}}$. We prove that the proportion of global sections $\sigma$ with $\left\lVert \sigma \right\rVert_{\infty}<1$ of $\overline{\mathcal{L}}^{\otimes d}$ whose divisor does not have a singular point on the fiber $\mathcal{X}_p$ over any prime $p
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信