{"title":"关于算术变量的Bertini正则定理","authors":"Xiaozong Wang","doi":"10.5802/jep.191","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{X}$ be a regular projective arithmetic variety equipped with an ample hermitian line bundle $\\overline{\\mathcal{L}}$. We prove that the proportion of global sections $\\sigma$ with $\\left\\lVert \\sigma \\right\\rVert_{\\infty}<1$ of $\\overline{\\mathcal{L}}^{\\otimes d}$ whose divisor does not have a singular point on the fiber $\\mathcal{X}_p$ over any prime $p<e^{\\varepsilon d}$ tends to $\\zeta_{\\mathcal{X}}(1+\\dim \\mathcal{X})^{-1}$ as $d\\rightarrow \\infty$.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Bertini regularity theorem for arithmetic varieties\",\"authors\":\"Xiaozong Wang\",\"doi\":\"10.5802/jep.191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{X}$ be a regular projective arithmetic variety equipped with an ample hermitian line bundle $\\\\overline{\\\\mathcal{L}}$. We prove that the proportion of global sections $\\\\sigma$ with $\\\\left\\\\lVert \\\\sigma \\\\right\\\\rVert_{\\\\infty}<1$ of $\\\\overline{\\\\mathcal{L}}^{\\\\otimes d}$ whose divisor does not have a singular point on the fiber $\\\\mathcal{X}_p$ over any prime $p<e^{\\\\varepsilon d}$ tends to $\\\\zeta_{\\\\mathcal{X}}(1+\\\\dim \\\\mathcal{X})^{-1}$ as $d\\\\rightarrow \\\\infty$.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Bertini regularity theorem for arithmetic varieties
Let $\mathcal{X}$ be a regular projective arithmetic variety equipped with an ample hermitian line bundle $\overline{\mathcal{L}}$. We prove that the proportion of global sections $\sigma$ with $\left\lVert \sigma \right\rVert_{\infty}<1$ of $\overline{\mathcal{L}}^{\otimes d}$ whose divisor does not have a singular point on the fiber $\mathcal{X}_p$ over any prime $p