使用现成的猜测攻击评估密码强度计的准确性

David Pereira, J. Ferreira, A. Mendes
{"title":"使用现成的猜测攻击评估密码强度计的准确性","authors":"David Pereira, J. Ferreira, A. Mendes","doi":"10.1109/ISSREW51248.2020.00079","DOIUrl":null,"url":null,"abstract":"In this paper we measure the accuracy of password strength meters (PSMs) using password guessing resistance against off-the-shelf guessing attacks. We consider 13 PSMs, 5 different attack tools, and a random selection of 60,000 passwords extracted from three different datasets of real-world password leaks. Our results show that a significant percentage of passwords classified as strong were cracked, thus suggesting that current password strength estimation methods can be improved.","PeriodicalId":202247,"journal":{"name":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Evaluating the Accuracy of Password Strength Meters using Off-The-Shelf Guessing Attacks\",\"authors\":\"David Pereira, J. Ferreira, A. Mendes\",\"doi\":\"10.1109/ISSREW51248.2020.00079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we measure the accuracy of password strength meters (PSMs) using password guessing resistance against off-the-shelf guessing attacks. We consider 13 PSMs, 5 different attack tools, and a random selection of 60,000 passwords extracted from three different datasets of real-world password leaks. Our results show that a significant percentage of passwords classified as strong were cracked, thus suggesting that current password strength estimation methods can be improved.\",\"PeriodicalId\":202247,\"journal\":{\"name\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW51248.2020.00079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW51248.2020.00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们使用密码猜测抵抗现成的猜测攻击来衡量密码强度计(psm)的准确性。我们考虑了13个psm, 5种不同的攻击工具,以及从三个不同的真实世界密码泄露数据集中随机抽取的60,000个密码。我们的研究结果表明,被分类为强的密码中有很大比例被破解,这表明目前的密码强度估计方法可以得到改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the Accuracy of Password Strength Meters using Off-The-Shelf Guessing Attacks
In this paper we measure the accuracy of password strength meters (PSMs) using password guessing resistance against off-the-shelf guessing attacks. We consider 13 PSMs, 5 different attack tools, and a random selection of 60,000 passwords extracted from three different datasets of real-world password leaks. Our results show that a significant percentage of passwords classified as strong were cracked, thus suggesting that current password strength estimation methods can be improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信