基于位移时间序列的碰撞荷载下拓扑优化结构变形聚类方法

Y. Shimizu
{"title":"基于位移时间序列的碰撞荷载下拓扑优化结构变形聚类方法","authors":"Y. Shimizu","doi":"10.23967/wccm-apcom.2022.037","DOIUrl":null,"url":null,"abstract":". Multi-objective Topology Optimization has been receiving more and more attention in structural design recently. It attempts to maximize several performance objectives by redistributing the material in a design space for a given set of boundary conditions and constraints, yielding many Pareto-optimal solutions. However, the high number of solutions makes it difficult to identify preferred designs. Therefore, an automatic way of summarizing solutions is needed for selecting interesting designs according to certain criteria, such as crashworthiness, deformation, and stress state. One approach for summarization is to cluster similar designs and obtain design representatives based on a suitable metric. For example, with Euclidean distance of the objective functions as the metric, design groups with similar performance can be identified and only the representative designs from different clusters may be analyzed. However, previous research has not dealt with the deformation-related time-series data of structures with different topologies. Since the non-linear dynamic behavior of designs is important in various fields such as vehicular crashworthiness, a clustering method based on time-dependent behavior of structures is proposed here. To compare the time-series displacement data of selected nodes in the structure and to create similarity matrices of those datasets, euclidean metrics and Dynamic Time Warping (DTW) are introduced. This is combined with clustering techniques such as k-medoids and Ordering Points To Identify the Clustering Structure (OPTICS), and we investigate the use of unsupervised learning methods to identify and group similar designs using the time series of nodal displacement data. In the first part, we create simple time-series datasets using a mass-spring system to validate the proposed methods. Each dataset has predefined clusters of data with distinct behavior such as different periods or modes. Then, we demonstrate that the combination of metrics for comparison of time series (Euclidean and DTW) and the clustering method (k-medoids and OPTICS) can identify the clusters of similar behavior accurately. In the second part, we apply these methods to a more realistic, engineering dataset of nodal displacement time series describing the crash behavior of topologically-optimized designs. We identify similar structures and obtain representative designs from each cluster. This reveals that the suggested method is useful in analyzing dynamic crash behavior and supports the designers in selecting representative structures based on deformation data at the early stages of the design process.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation Clustering Methods for Topologically Optimized Structures under Crash Load based on Displacement Time Series\",\"authors\":\"Y. Shimizu\",\"doi\":\"10.23967/wccm-apcom.2022.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Multi-objective Topology Optimization has been receiving more and more attention in structural design recently. It attempts to maximize several performance objectives by redistributing the material in a design space for a given set of boundary conditions and constraints, yielding many Pareto-optimal solutions. However, the high number of solutions makes it difficult to identify preferred designs. Therefore, an automatic way of summarizing solutions is needed for selecting interesting designs according to certain criteria, such as crashworthiness, deformation, and stress state. One approach for summarization is to cluster similar designs and obtain design representatives based on a suitable metric. For example, with Euclidean distance of the objective functions as the metric, design groups with similar performance can be identified and only the representative designs from different clusters may be analyzed. However, previous research has not dealt with the deformation-related time-series data of structures with different topologies. Since the non-linear dynamic behavior of designs is important in various fields such as vehicular crashworthiness, a clustering method based on time-dependent behavior of structures is proposed here. To compare the time-series displacement data of selected nodes in the structure and to create similarity matrices of those datasets, euclidean metrics and Dynamic Time Warping (DTW) are introduced. This is combined with clustering techniques such as k-medoids and Ordering Points To Identify the Clustering Structure (OPTICS), and we investigate the use of unsupervised learning methods to identify and group similar designs using the time series of nodal displacement data. In the first part, we create simple time-series datasets using a mass-spring system to validate the proposed methods. Each dataset has predefined clusters of data with distinct behavior such as different periods or modes. Then, we demonstrate that the combination of metrics for comparison of time series (Euclidean and DTW) and the clustering method (k-medoids and OPTICS) can identify the clusters of similar behavior accurately. In the second part, we apply these methods to a more realistic, engineering dataset of nodal displacement time series describing the crash behavior of topologically-optimized designs. We identify similar structures and obtain representative designs from each cluster. This reveals that the suggested method is useful in analyzing dynamic crash behavior and supports the designers in selecting representative structures based on deformation data at the early stages of the design process.\",\"PeriodicalId\":429847,\"journal\":{\"name\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/wccm-apcom.2022.037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 近年来,多目标拓扑优化在结构设计中受到越来越多的关注。它试图通过在给定的边界条件和约束下重新分配设计空间中的材料来最大化几个性能目标,从而产生许多帕累托最优解。然而,大量的解决方案使得确定首选设计变得困难。因此,需要一种自动总结解决方案的方法,以便根据一定的标准(如耐撞性、变形和应力状态)选择有趣的设计。总结的一种方法是将相似的设计聚类,并基于合适的度量获得设计代表。例如,以目标函数的欧几里得距离为度量,可以识别出性能相似的设计群体,只分析来自不同聚类的代表性设计。然而,以往的研究并没有处理不同拓扑结构的变形相关时间序列数据。由于设计的非线性动态行为在诸如车辆耐撞性等各个领域都很重要,本文提出了一种基于结构时变行为的聚类方法。为了比较结构中选定节点的时间序列位移数据并建立这些数据集的相似矩阵,引入了欧几里得度量和动态时间翘曲(DTW)。这与聚类技术如k-介质和排序点识别聚类结构(OPTICS)相结合,我们研究了使用无监督学习方法使用节点位移数据的时间序列来识别和分组相似的设计。在第一部分中,我们使用质量弹簧系统创建简单的时间序列数据集来验证所提出的方法。每个数据集都有预定义的具有不同行为的数据簇,例如不同的周期或模式。然后,我们证明了用于时间序列比较的度量(欧几里得和DTW)和聚类方法(k-medoids和OPTICS)的组合可以准确地识别具有相似行为的聚类。在第二部分中,我们将这些方法应用于描述拓扑优化设计的碰撞行为的节点位移时间序列的更现实的工程数据集。我们识别相似的结构,并从每个集群中获得代表性的设计。结果表明,本文提出的方法可用于分析动态碰撞行为,并支持设计者在设计过程的早期阶段根据变形数据选择具有代表性的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformation Clustering Methods for Topologically Optimized Structures under Crash Load based on Displacement Time Series
. Multi-objective Topology Optimization has been receiving more and more attention in structural design recently. It attempts to maximize several performance objectives by redistributing the material in a design space for a given set of boundary conditions and constraints, yielding many Pareto-optimal solutions. However, the high number of solutions makes it difficult to identify preferred designs. Therefore, an automatic way of summarizing solutions is needed for selecting interesting designs according to certain criteria, such as crashworthiness, deformation, and stress state. One approach for summarization is to cluster similar designs and obtain design representatives based on a suitable metric. For example, with Euclidean distance of the objective functions as the metric, design groups with similar performance can be identified and only the representative designs from different clusters may be analyzed. However, previous research has not dealt with the deformation-related time-series data of structures with different topologies. Since the non-linear dynamic behavior of designs is important in various fields such as vehicular crashworthiness, a clustering method based on time-dependent behavior of structures is proposed here. To compare the time-series displacement data of selected nodes in the structure and to create similarity matrices of those datasets, euclidean metrics and Dynamic Time Warping (DTW) are introduced. This is combined with clustering techniques such as k-medoids and Ordering Points To Identify the Clustering Structure (OPTICS), and we investigate the use of unsupervised learning methods to identify and group similar designs using the time series of nodal displacement data. In the first part, we create simple time-series datasets using a mass-spring system to validate the proposed methods. Each dataset has predefined clusters of data with distinct behavior such as different periods or modes. Then, we demonstrate that the combination of metrics for comparison of time series (Euclidean and DTW) and the clustering method (k-medoids and OPTICS) can identify the clusters of similar behavior accurately. In the second part, we apply these methods to a more realistic, engineering dataset of nodal displacement time series describing the crash behavior of topologically-optimized designs. We identify similar structures and obtain representative designs from each cluster. This reveals that the suggested method is useful in analyzing dynamic crash behavior and supports the designers in selecting representative structures based on deformation data at the early stages of the design process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信