打破现状:利用空间方便的输入设备改进3D手势识别

Michael Hoffman, Paul Varcholik, J. Laviola
{"title":"打破现状:利用空间方便的输入设备改进3D手势识别","authors":"Michael Hoffman, Paul Varcholik, J. Laviola","doi":"10.1109/VR.2010.5444813","DOIUrl":null,"url":null,"abstract":"We present a systematic study on the recognition of 3D gestures using spatially convenient input devices. Specifically, we examine the linear acceleration-sensing Nintendo Wii Remote coupled with the angular velocity-sensing Nintendo Wii MotionPlus. For the study, we created a 3D gesture database, collecting data on 25 distinct gestures totalling 8500 gestures samples. Our experiment explores how the number of gestures and the amount of gestures samples used to train two commonly used machine learning algorithms, a linear and AdaBoost classifier, affect overall recognition accuracy. We examined these gesture recognition algorithms with user dependent and user independent training approaches and explored the affect of using the Wii Remote with and without the Wii MotionPlus attachment. Our results show that in the user dependent case, both the Ad-aBoost and linear classification algorithms can recognize up to 25 gestures at over 90% accuracy, with 15 training samples per gesture, and up to 20 gestures at over 90% accuracy, with only five training samples per gesture. In particular, all 25 gestures could be recognized at over 99% accuracy with the linear classifier using 15 training samples per gesture, with the Wii Remote coupled with the Wii MotionPlus. In addition, both algorithms can recognize up to nine gestures at over 90% accuracy using a user independent training database with 100 samples per gesture. The Wii MotionPlus attachment played a significant role in improving accuracy in both the user dependent and independent cases.","PeriodicalId":151060,"journal":{"name":"2010 IEEE Virtual Reality Conference (VR)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":"{\"title\":\"Breaking the status quo: Improving 3D gesture recognition with spatially convenient input devices\",\"authors\":\"Michael Hoffman, Paul Varcholik, J. Laviola\",\"doi\":\"10.1109/VR.2010.5444813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a systematic study on the recognition of 3D gestures using spatially convenient input devices. Specifically, we examine the linear acceleration-sensing Nintendo Wii Remote coupled with the angular velocity-sensing Nintendo Wii MotionPlus. For the study, we created a 3D gesture database, collecting data on 25 distinct gestures totalling 8500 gestures samples. Our experiment explores how the number of gestures and the amount of gestures samples used to train two commonly used machine learning algorithms, a linear and AdaBoost classifier, affect overall recognition accuracy. We examined these gesture recognition algorithms with user dependent and user independent training approaches and explored the affect of using the Wii Remote with and without the Wii MotionPlus attachment. Our results show that in the user dependent case, both the Ad-aBoost and linear classification algorithms can recognize up to 25 gestures at over 90% accuracy, with 15 training samples per gesture, and up to 20 gestures at over 90% accuracy, with only five training samples per gesture. In particular, all 25 gestures could be recognized at over 99% accuracy with the linear classifier using 15 training samples per gesture, with the Wii Remote coupled with the Wii MotionPlus. In addition, both algorithms can recognize up to nine gestures at over 90% accuracy using a user independent training database with 100 samples per gesture. The Wii MotionPlus attachment played a significant role in improving accuracy in both the user dependent and independent cases.\",\"PeriodicalId\":151060,\"journal\":{\"name\":\"2010 IEEE Virtual Reality Conference (VR)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Virtual Reality Conference (VR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VR.2010.5444813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Virtual Reality Conference (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2010.5444813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

摘要

我们提出了一个系统的研究识别三维手势使用空间方便的输入设备。具体来说,我们研究了线性加速感应的任天堂Wii遥控器与角速度感应的任天堂Wii MotionPlus。在这项研究中,我们创建了一个3D手势数据库,收集了25种不同手势的数据,总共8500个手势样本。我们的实验探讨了用于训练两种常用机器学习算法(线性分类器和AdaBoost分类器)的手势数量和手势样本数量如何影响整体识别精度。我们通过用户依赖和用户独立的训练方法检查了这些手势识别算法,并探索了使用带有和不带有Wii MotionPlus附件的Wii遥控器的影响。我们的研究结果表明,在用户依赖的情况下,Ad-aBoost和线性分类算法都可以识别多达25个手势,准确率超过90%,每个手势有15个训练样本;在每个手势只有5个训练样本的情况下,识别多达20个手势,准确率超过90%。特别是,所有25个手势都可以用线性分类器识别,每个手势使用15个训练样本,Wii遥控器与Wii MotionPlus相结合,准确率超过99%。此外,这两种算法使用用户独立的训练数据库,每个手势有100个样本,可以识别多达9个手势,准确率超过90%。Wii MotionPlus附件在提高用户依赖和独立情况下的准确性方面发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breaking the status quo: Improving 3D gesture recognition with spatially convenient input devices
We present a systematic study on the recognition of 3D gestures using spatially convenient input devices. Specifically, we examine the linear acceleration-sensing Nintendo Wii Remote coupled with the angular velocity-sensing Nintendo Wii MotionPlus. For the study, we created a 3D gesture database, collecting data on 25 distinct gestures totalling 8500 gestures samples. Our experiment explores how the number of gestures and the amount of gestures samples used to train two commonly used machine learning algorithms, a linear and AdaBoost classifier, affect overall recognition accuracy. We examined these gesture recognition algorithms with user dependent and user independent training approaches and explored the affect of using the Wii Remote with and without the Wii MotionPlus attachment. Our results show that in the user dependent case, both the Ad-aBoost and linear classification algorithms can recognize up to 25 gestures at over 90% accuracy, with 15 training samples per gesture, and up to 20 gestures at over 90% accuracy, with only five training samples per gesture. In particular, all 25 gestures could be recognized at over 99% accuracy with the linear classifier using 15 training samples per gesture, with the Wii Remote coupled with the Wii MotionPlus. In addition, both algorithms can recognize up to nine gestures at over 90% accuracy using a user independent training database with 100 samples per gesture. The Wii MotionPlus attachment played a significant role in improving accuracy in both the user dependent and independent cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信