未知话题边界的新闻演讲摘要

S. Takao, T. Haru, Y. Ariki
{"title":"未知话题边界的新闻演讲摘要","authors":"S. Takao, T. Haru, Y. Ariki","doi":"10.1109/ICME.2001.1237795","DOIUrl":null,"url":null,"abstract":"TV viewers want to grasp the contents of the news program in a short time due to the increasing number of news channels. Conventional summarization methods based on extraction of the important sentences from each topic included in the news speech is insufficient because the important sentences can not always be extracted from each topic due to unknown topic boundary. To solve this problem, in this paper, we propose a summarization method of TV news program by segmenting the news speech into topics and then extracting the important sentence from each topic.","PeriodicalId":405589,"journal":{"name":"IEEE International Conference on Multimedia and Expo, 2001. ICME 2001.","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Summarization of news speech with unknown topic boundary\",\"authors\":\"S. Takao, T. Haru, Y. Ariki\",\"doi\":\"10.1109/ICME.2001.1237795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TV viewers want to grasp the contents of the news program in a short time due to the increasing number of news channels. Conventional summarization methods based on extraction of the important sentences from each topic included in the news speech is insufficient because the important sentences can not always be extracted from each topic due to unknown topic boundary. To solve this problem, in this paper, we propose a summarization method of TV news program by segmenting the news speech into topics and then extracting the important sentence from each topic.\",\"PeriodicalId\":405589,\"journal\":{\"name\":\"IEEE International Conference on Multimedia and Expo, 2001. ICME 2001.\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Multimedia and Expo, 2001. ICME 2001.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2001.1237795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Multimedia and Expo, 2001. ICME 2001.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2001.1237795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于新闻频道的增多,电视观众希望在短时间内掌握新闻节目的内容。传统的基于从新闻演讲中包含的每个主题中提取重要句子的摘要方法是不够的,因为主题边界未知,不能总是从每个主题中提取重要句子。为了解决这一问题,本文提出了一种电视新闻节目的摘要方法,即将新闻讲话分割成多个主题,然后从每个主题中提取出重要的句子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Summarization of news speech with unknown topic boundary
TV viewers want to grasp the contents of the news program in a short time due to the increasing number of news channels. Conventional summarization methods based on extraction of the important sentences from each topic included in the news speech is insufficient because the important sentences can not always be extracted from each topic due to unknown topic boundary. To solve this problem, in this paper, we propose a summarization method of TV news program by segmenting the news speech into topics and then extracting the important sentence from each topic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信