机器学习中的归算技术和递归特征消除在II型糖尿病分类中的应用

V. P. Magboo, M. A. Magboo
{"title":"机器学习中的归算技术和递归特征消除在II型糖尿病分类中的应用","authors":"V. P. Magboo, M. A. Magboo","doi":"10.1145/3508259.3508288","DOIUrl":null,"url":null,"abstract":"Type II diabetes is a chronic metabolic disease secondary to elevated blood glucose levels. Complications of this disease include heart attack, stroke, blindness, renal failure, lower limb amputation and mortality. Due to its rising prevalence and consequent mortality, it is important to identify at an early stage those patients at high risk of developing diabetes. We applied 8 machine learning techniques namely: support vector machine, logistic regression, k-nearest neighbor, naïve Bayes, decision tree, random forest, AdaBoost and XGBoost in predicting diabetes using a publicly available diabetes dataset. In our study, Naïve Bayes with median imputation and recursive feature elimination obtained the highest performance with an accuracy rate of 81.0%. Although the results are very promising, one major limitation in this study is the small number of samples in the dataset. Early accurate detection can help patients to proactively monitor their lifestyle habits mitigating the risks of complications of uncontrolled diabetes.","PeriodicalId":119217,"journal":{"name":"Artificial Intelligence and Cloud Computing Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Imputation Techniques and Recursive Feature Elimination in Machine Learning Applied to Type II Diabetes Classification\",\"authors\":\"V. P. Magboo, M. A. Magboo\",\"doi\":\"10.1145/3508259.3508288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type II diabetes is a chronic metabolic disease secondary to elevated blood glucose levels. Complications of this disease include heart attack, stroke, blindness, renal failure, lower limb amputation and mortality. Due to its rising prevalence and consequent mortality, it is important to identify at an early stage those patients at high risk of developing diabetes. We applied 8 machine learning techniques namely: support vector machine, logistic regression, k-nearest neighbor, naïve Bayes, decision tree, random forest, AdaBoost and XGBoost in predicting diabetes using a publicly available diabetes dataset. In our study, Naïve Bayes with median imputation and recursive feature elimination obtained the highest performance with an accuracy rate of 81.0%. Although the results are very promising, one major limitation in this study is the small number of samples in the dataset. Early accurate detection can help patients to proactively monitor their lifestyle habits mitigating the risks of complications of uncontrolled diabetes.\",\"PeriodicalId\":119217,\"journal\":{\"name\":\"Artificial Intelligence and Cloud Computing Conference\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Cloud Computing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508259.3508288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Cloud Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508259.3508288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imputation Techniques and Recursive Feature Elimination in Machine Learning Applied to Type II Diabetes Classification
Type II diabetes is a chronic metabolic disease secondary to elevated blood glucose levels. Complications of this disease include heart attack, stroke, blindness, renal failure, lower limb amputation and mortality. Due to its rising prevalence and consequent mortality, it is important to identify at an early stage those patients at high risk of developing diabetes. We applied 8 machine learning techniques namely: support vector machine, logistic regression, k-nearest neighbor, naïve Bayes, decision tree, random forest, AdaBoost and XGBoost in predicting diabetes using a publicly available diabetes dataset. In our study, Naïve Bayes with median imputation and recursive feature elimination obtained the highest performance with an accuracy rate of 81.0%. Although the results are very promising, one major limitation in this study is the small number of samples in the dataset. Early accurate detection can help patients to proactively monitor their lifestyle habits mitigating the risks of complications of uncontrolled diabetes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信