无监督子宫颈细胞分割的集成框架

Agnimitra Sen, Shyamali Mitra, S. Chakraborty, Debashri Mondal, K. Santosh, N. Das
{"title":"无监督子宫颈细胞分割的集成框架","authors":"Agnimitra Sen, Shyamali Mitra, S. Chakraborty, Debashri Mondal, K. Santosh, N. Das","doi":"10.1109/CBMS55023.2022.00068","DOIUrl":null,"url":null,"abstract":"In medical image segmentation, preparing ground truths (or masks) is not trivial as it requires expert clinicians to manually label regions-of-interest. Cervical cytology image segmentation is no exception. In this paper, we propose an unsupervised segmentation framework for cervical cell and whole slide segmentation uses an ensemble of three clustering algorithms namely, K-means, K-means++ and Mean Shift clustering. The final cluster centers obtained from these algorithms are used to initialize cluster points for Fuzzy C-means clustering algorithm. The proposed method is evaluated on multiple standard datasets: HErlev Pap Smear dataset and SIPaKMeD Pap Smear dataset. We also evaluated on a whole slide image dataset (source: CMATER-JU laboratory) and our results are promising and comparable. Overall, our results on multiple benchmark datasets justify the viability of the proposed framework.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ensemble Framework for Unsupervised Cervical Cell Segmentation\",\"authors\":\"Agnimitra Sen, Shyamali Mitra, S. Chakraborty, Debashri Mondal, K. Santosh, N. Das\",\"doi\":\"10.1109/CBMS55023.2022.00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In medical image segmentation, preparing ground truths (or masks) is not trivial as it requires expert clinicians to manually label regions-of-interest. Cervical cytology image segmentation is no exception. In this paper, we propose an unsupervised segmentation framework for cervical cell and whole slide segmentation uses an ensemble of three clustering algorithms namely, K-means, K-means++ and Mean Shift clustering. The final cluster centers obtained from these algorithms are used to initialize cluster points for Fuzzy C-means clustering algorithm. The proposed method is evaluated on multiple standard datasets: HErlev Pap Smear dataset and SIPaKMeD Pap Smear dataset. We also evaluated on a whole slide image dataset (source: CMATER-JU laboratory) and our results are promising and comparable. Overall, our results on multiple benchmark datasets justify the viability of the proposed framework.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在医学图像分割中,准备基础真理(或掩模)不是微不足道的,因为它需要专家临床医生手动标记感兴趣的区域。宫颈细胞学图像分割也不例外。本文提出了一种基于K-means、k -means++和Mean Shift三种聚类算法的宫颈细胞和整个切片的无监督分割框架。这些算法得到的最终聚类中心用于模糊c均值聚类算法初始化聚类点。该方法在多个标准数据集上进行了评估:HErlev子宫颈抹片数据集和SIPaKMeD子宫颈抹片数据集。我们还对整个幻灯片图像数据集进行了评估(来源:CMATER-JU实验室),我们的结果是有希望的和可比较的。总的来说,我们在多个基准数据集上的结果证明了所提出框架的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble Framework for Unsupervised Cervical Cell Segmentation
In medical image segmentation, preparing ground truths (or masks) is not trivial as it requires expert clinicians to manually label regions-of-interest. Cervical cytology image segmentation is no exception. In this paper, we propose an unsupervised segmentation framework for cervical cell and whole slide segmentation uses an ensemble of three clustering algorithms namely, K-means, K-means++ and Mean Shift clustering. The final cluster centers obtained from these algorithms are used to initialize cluster points for Fuzzy C-means clustering algorithm. The proposed method is evaluated on multiple standard datasets: HErlev Pap Smear dataset and SIPaKMeD Pap Smear dataset. We also evaluated on a whole slide image dataset (source: CMATER-JU laboratory) and our results are promising and comparable. Overall, our results on multiple benchmark datasets justify the viability of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信