用于语音去噪的鲁棒稀疏性声学多通道均衡

I. Kodrasi, Ante Jukic, S. Doclo
{"title":"用于语音去噪的鲁棒稀疏性声学多通道均衡","authors":"I. Kodrasi, Ante Jukic, S. Doclo","doi":"10.1109/ICASSP.2016.7471658","DOIUrl":null,"url":null,"abstract":"This paper presents a novel signal-dependent method to increase the robustness of acoustic multi-channel equalization techniques against room impulse response (RIR) estimation errors. Aiming at obtaining an output signal which better resembles a clean speech signal, we propose to extend the acoustic multi-channel equalization cost function with a penalty function which promotes sparsity of the output signal in the short-time Fourier transform domain. Two conventionally used sparsity-promoting penalty functions are investigated, i.e., the l0-norm and the l1-norm, and the sparsity-promoting filters are iteratively computed using the alternating direction method of multipliers. Simulation results for several RIR estimation errors show that incorporating a sparsity-promoting penalty function significantly increases the robustness, with the l1-norm penalty function outperforming the l0-norm penalty function.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Robust sparsity-promoting acoustic multi-channel equalization for speech dereverberation\",\"authors\":\"I. Kodrasi, Ante Jukic, S. Doclo\",\"doi\":\"10.1109/ICASSP.2016.7471658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel signal-dependent method to increase the robustness of acoustic multi-channel equalization techniques against room impulse response (RIR) estimation errors. Aiming at obtaining an output signal which better resembles a clean speech signal, we propose to extend the acoustic multi-channel equalization cost function with a penalty function which promotes sparsity of the output signal in the short-time Fourier transform domain. Two conventionally used sparsity-promoting penalty functions are investigated, i.e., the l0-norm and the l1-norm, and the sparsity-promoting filters are iteratively computed using the alternating direction method of multipliers. Simulation results for several RIR estimation errors show that incorporating a sparsity-promoting penalty function significantly increases the robustness, with the l1-norm penalty function outperforming the l0-norm penalty function.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7471658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7471658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种新的信号相关方法来提高声学多通道均衡技术对房间脉冲响应估计误差的鲁棒性。为了获得更接近于清晰语音信号的输出信号,我们提出将声学多通道均衡代价函数扩展为一个惩罚函数,以提高输出信号在短时傅里叶变换域中的稀疏性。研究了两种常用的促进稀疏性的惩罚函数,即10 -范数和11 -范数,并使用乘法器的交替方向法迭代计算了促进稀疏性的滤波器。对几种RIR估计误差的仿真结果表明,加入促进稀疏性的惩罚函数显著提高了鲁棒性,11范数惩罚函数的鲁棒性优于10范数惩罚函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust sparsity-promoting acoustic multi-channel equalization for speech dereverberation
This paper presents a novel signal-dependent method to increase the robustness of acoustic multi-channel equalization techniques against room impulse response (RIR) estimation errors. Aiming at obtaining an output signal which better resembles a clean speech signal, we propose to extend the acoustic multi-channel equalization cost function with a penalty function which promotes sparsity of the output signal in the short-time Fourier transform domain. Two conventionally used sparsity-promoting penalty functions are investigated, i.e., the l0-norm and the l1-norm, and the sparsity-promoting filters are iteratively computed using the alternating direction method of multipliers. Simulation results for several RIR estimation errors show that incorporating a sparsity-promoting penalty function significantly increases the robustness, with the l1-norm penalty function outperforming the l0-norm penalty function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信