负二项Marshall-Olkin - Rayleigh分布及其应用

K. K. Jose, Remya Sivadas
{"title":"负二项Marshall-Olkin - Rayleigh分布及其应用","authors":"K. K. Jose, Remya Sivadas","doi":"10.1515/eqc-2015-0009","DOIUrl":null,"url":null,"abstract":"Abstract A generalization of the Marshall–Olkin family of distributions is developed using negative binomial compounding instead of geometric compounding where addition is replaced by minimum of a random number of observations X1,X2,...,XN. Here, we consider the Rayleigh distribution and extend it to obtain a Negative Binomial Marshall–Olkin Rayleigh Distribution. Various properties of the new family are investigated. Maximum likelihood estimates are obtained. The use of the model in lifetime modeling is established by fitting it to a real data set on remission times of bladder cancer patients. Also we try to develop a reliability test plan for acceptance or rejection of a lot of products submitted for inspection with lifetimes governed by this distribution.","PeriodicalId":360039,"journal":{"name":"Economic Quality Control","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Negative Binomial Marshall–Olkin Rayleigh Distribution and Its Applications\",\"authors\":\"K. K. Jose, Remya Sivadas\",\"doi\":\"10.1515/eqc-2015-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A generalization of the Marshall–Olkin family of distributions is developed using negative binomial compounding instead of geometric compounding where addition is replaced by minimum of a random number of observations X1,X2,...,XN. Here, we consider the Rayleigh distribution and extend it to obtain a Negative Binomial Marshall–Olkin Rayleigh Distribution. Various properties of the new family are investigated. Maximum likelihood estimates are obtained. The use of the model in lifetime modeling is established by fitting it to a real data set on remission times of bladder cancer patients. Also we try to develop a reliability test plan for acceptance or rejection of a lot of products submitted for inspection with lifetimes governed by this distribution.\",\"PeriodicalId\":360039,\"journal\":{\"name\":\"Economic Quality Control\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economic Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2015-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2015-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用负二项式复合代替几何复合,用随机观测值X1,X2,…,XN的最小值代替加法,对Marshall-Olkin分布族进行了推广。这里,我们考虑瑞利分布,并将其推广得到负二项Marshall-Olkin瑞利分布。研究了新家族的各种性质。得到最大似然估计。通过将该模型拟合到膀胱癌患者缓解时间的真实数据集,建立了该模型在生命期建模中的应用。此外,我们试图制定一个可靠性测试计划,以接受或拒绝许多产品提交检查,其使用寿命由该分发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Negative Binomial Marshall–Olkin Rayleigh Distribution and Its Applications
Abstract A generalization of the Marshall–Olkin family of distributions is developed using negative binomial compounding instead of geometric compounding where addition is replaced by minimum of a random number of observations X1,X2,...,XN. Here, we consider the Rayleigh distribution and extend it to obtain a Negative Binomial Marshall–Olkin Rayleigh Distribution. Various properties of the new family are investigated. Maximum likelihood estimates are obtained. The use of the model in lifetime modeling is established by fitting it to a real data set on remission times of bladder cancer patients. Also we try to develop a reliability test plan for acceptance or rejection of a lot of products submitted for inspection with lifetimes governed by this distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信