Waldo Gálvez, F. Grandoni, Sandy Heydrich, Salvatore Ingala, A. Khan, Andreas Wiese
{"title":"利用l -填料逼近几何背包","authors":"Waldo Gálvez, F. Grandoni, Sandy Heydrich, Salvatore Ingala, A. Khan, Andreas Wiese","doi":"10.1109/FOCS.2017.32","DOIUrl":null,"url":null,"abstract":"We study the two-dimensional geometric knapsack problem (2DK) in which we are given a set of n axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack. The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack (without rotating items). The best-known polynomial-time approximation factor for this problem (even just in the cardinality case) is 2+ε [Jansen and Zhang, SODA 2004]. In this paper we break the 2 approximation barrier, achieving a polynomialtime 17/9 + ε","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Approximating Geometric Knapsack via L-Packings\",\"authors\":\"Waldo Gálvez, F. Grandoni, Sandy Heydrich, Salvatore Ingala, A. Khan, Andreas Wiese\",\"doi\":\"10.1109/FOCS.2017.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the two-dimensional geometric knapsack problem (2DK) in which we are given a set of n axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack. The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack (without rotating items). The best-known polynomial-time approximation factor for this problem (even just in the cardinality case) is 2+ε [Jansen and Zhang, SODA 2004]. In this paper we break the 2 approximation barrier, achieving a polynomialtime 17/9 + ε\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
摘要
我们研究了二维几何背包问题(2DK),在这个问题中,我们得到了一组n个轴对齐的矩形物品,每个物品都有一个相关的利润,以及一个轴对齐的方形背包。目标是找到背包内物品(不旋转物品)的最大利润子集的(非重叠)包装。这个问题最著名的多项式时间近似因子(即使只是在基数情况下)是2+ε[Jansen and Zhang, SODA, 2004]。在本文中,我们打破了2近似障碍,实现了多项式时间17/9 + ε
We study the two-dimensional geometric knapsack problem (2DK) in which we are given a set of n axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack. The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack (without rotating items). The best-known polynomial-time approximation factor for this problem (even just in the cardinality case) is 2+ε [Jansen and Zhang, SODA 2004]. In this paper we break the 2 approximation barrier, achieving a polynomialtime 17/9 + ε