加权子空间拟合的低复杂度方向估计方法

Lei Huang, Shunjun Wu, Linrang Zhang
{"title":"加权子空间拟合的低复杂度方向估计方法","authors":"Lei Huang, Shunjun Wu, Linrang Zhang","doi":"10.1109/RADAR.2005.1435876","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a low-complexity method of weighted subspace fitting (WSF) for direction-of-arrival (DOA) estimation. With the properties of the multi-stage Wiener filter (MSWF), we derive a novel criterion function for the WSF method without the estimate of an array covariance matrix and its eigendecomposition. A new approach for noise variance estimation is also proposed. Numerical results indicate that by selecting a specific weighting matrix, the low-complexity WSF estimator can provide the comparable estimation performance with the conventional WSF method.","PeriodicalId":444253,"journal":{"name":"IEEE International Radar Conference, 2005.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-complexity method of weighted subspace fitting for direction estimation\",\"authors\":\"Lei Huang, Shunjun Wu, Linrang Zhang\",\"doi\":\"10.1109/RADAR.2005.1435876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a low-complexity method of weighted subspace fitting (WSF) for direction-of-arrival (DOA) estimation. With the properties of the multi-stage Wiener filter (MSWF), we derive a novel criterion function for the WSF method without the estimate of an array covariance matrix and its eigendecomposition. A new approach for noise variance estimation is also proposed. Numerical results indicate that by selecting a specific weighting matrix, the low-complexity WSF estimator can provide the comparable estimation performance with the conventional WSF method.\",\"PeriodicalId\":444253,\"journal\":{\"name\":\"IEEE International Radar Conference, 2005.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Radar Conference, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2005.1435876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Radar Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2005.1435876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一种低复杂度的加权子空间拟合(WSF)估计到达方向(DOA)的方法。利用多级维纳滤波器(MSWF)的特性,推导出一种新的不需要估计阵列协方差矩阵及其特征分解的判据函数。提出了一种新的噪声方差估计方法。数值结果表明,通过选择特定的加权矩阵,低复杂度WSF估计器可以提供与传统WSF方法相当的估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-complexity method of weighted subspace fitting for direction estimation
In this paper, we consider a low-complexity method of weighted subspace fitting (WSF) for direction-of-arrival (DOA) estimation. With the properties of the multi-stage Wiener filter (MSWF), we derive a novel criterion function for the WSF method without the estimate of an array covariance matrix and its eigendecomposition. A new approach for noise variance estimation is also proposed. Numerical results indicate that by selecting a specific weighting matrix, the low-complexity WSF estimator can provide the comparable estimation performance with the conventional WSF method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信