{"title":"非麦克斯韦初始密度下无碰撞连续介质动力学","authors":"T. Salnikova, V. Salnikov","doi":"10.1109/STAB.2018.8408394","DOIUrl":null,"url":null,"abstract":"Being periodically under gravitational force field, collisionless ideal gas in a rectangular parallelepiped performs the non-equilibrium irreversible Poincare cycles. We prove, that for any initial probability distribution density this system irreversibly tends to the Maxwell distribution on the velocities, and uniform distribution on the coordinates.","PeriodicalId":395462,"journal":{"name":"2018 14th International Conference \"Stability and Oscillations of Nonlinear Control Systems\" (Pyatnitskiy's Conference) (STAB)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Kinetics of collisionless continuous medium for non-maxwellian initial density\",\"authors\":\"T. Salnikova, V. Salnikov\",\"doi\":\"10.1109/STAB.2018.8408394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Being periodically under gravitational force field, collisionless ideal gas in a rectangular parallelepiped performs the non-equilibrium irreversible Poincare cycles. We prove, that for any initial probability distribution density this system irreversibly tends to the Maxwell distribution on the velocities, and uniform distribution on the coordinates.\",\"PeriodicalId\":395462,\"journal\":{\"name\":\"2018 14th International Conference \\\"Stability and Oscillations of Nonlinear Control Systems\\\" (Pyatnitskiy's Conference) (STAB)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th International Conference \\\"Stability and Oscillations of Nonlinear Control Systems\\\" (Pyatnitskiy's Conference) (STAB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STAB.2018.8408394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference \"Stability and Oscillations of Nonlinear Control Systems\" (Pyatnitskiy's Conference) (STAB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STAB.2018.8408394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinetics of collisionless continuous medium for non-maxwellian initial density
Being periodically under gravitational force field, collisionless ideal gas in a rectangular parallelepiped performs the non-equilibrium irreversible Poincare cycles. We prove, that for any initial probability distribution density this system irreversibly tends to the Maxwell distribution on the velocities, and uniform distribution on the coordinates.