流动通道厚度差异对研究堆燃料板偏转的影响

C. Bojanowski, G. Solbrekken, G. Schnieders, J. Rivers, E. Wilson, L. Foyto
{"title":"流动通道厚度差异对研究堆燃料板偏转的影响","authors":"C. Bojanowski, G. Solbrekken, G. Schnieders, J. Rivers, E. Wilson, L. Foyto","doi":"10.1115/power2019-1928","DOIUrl":null,"url":null,"abstract":"\n Low-enriched uranium (LEU) fuel element designs for the U.S. high performance research reactors LEU conversion cores have been optimized by each reactor facility to allow the reactors to meet mission, operational, and safety basis requirements using monolithic uranium-molybdenum fuel. As a part of work supporting the Preliminary Safety Analysis Report (PSAR) submitted to the NRC by the University of Missouri Research Reactor (MURR), the impact of thinner 1.12 mm LEU curved fuel plates, compared to the currently used highly-enriched uranium (HEU) curved plate thickness of 1.27 mm, has been assessed for hydro-mechanical performance.\n Plate deflection can be induced by the hydrodynamic pressure differential caused by differences in the thicknesses of surrounding coolant flow channels. An experimental study was conducted on relevant Materials Test Reactor-type (MTR-type) reactor plate geometries in a water flow test loop to validate computational models simulating flow-induced plate deflection. Three-dimensional fluid-structure interaction (FSI) simulations of the experiments were performed using several commercially available multi-physics simulation codes. Inclusion of as-built geometry of the plates and channels in the simulations was key to achieving good agreement with measured deflections.\n The validated computational methodology was applied to a model of the prototypic MURR LEU plate. For the nominal flow conditions, a small deflection of the plate on the order of 5 micrometers was predicted. That deflection is significantly less than the allowances in the PSAR for change in coolant channel thickness.\n The experimental model validation of plate deflection is important since conventional figures of merit for the robustness of MTR-type fuel plates under flow, such as the Miller critical velocity, often show a weak correlation with the prediction of stability. Subsequent to this work, irradiation qualification of the MURR LEU fuel element design has begun and will conclude with a full-size demonstration element test.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deflections of Plates in Research Reactor Fuel by Disparities in Thicknesses of Flow Channels\",\"authors\":\"C. Bojanowski, G. Solbrekken, G. Schnieders, J. Rivers, E. Wilson, L. Foyto\",\"doi\":\"10.1115/power2019-1928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Low-enriched uranium (LEU) fuel element designs for the U.S. high performance research reactors LEU conversion cores have been optimized by each reactor facility to allow the reactors to meet mission, operational, and safety basis requirements using monolithic uranium-molybdenum fuel. As a part of work supporting the Preliminary Safety Analysis Report (PSAR) submitted to the NRC by the University of Missouri Research Reactor (MURR), the impact of thinner 1.12 mm LEU curved fuel plates, compared to the currently used highly-enriched uranium (HEU) curved plate thickness of 1.27 mm, has been assessed for hydro-mechanical performance.\\n Plate deflection can be induced by the hydrodynamic pressure differential caused by differences in the thicknesses of surrounding coolant flow channels. An experimental study was conducted on relevant Materials Test Reactor-type (MTR-type) reactor plate geometries in a water flow test loop to validate computational models simulating flow-induced plate deflection. Three-dimensional fluid-structure interaction (FSI) simulations of the experiments were performed using several commercially available multi-physics simulation codes. Inclusion of as-built geometry of the plates and channels in the simulations was key to achieving good agreement with measured deflections.\\n The validated computational methodology was applied to a model of the prototypic MURR LEU plate. For the nominal flow conditions, a small deflection of the plate on the order of 5 micrometers was predicted. That deflection is significantly less than the allowances in the PSAR for change in coolant channel thickness.\\n The experimental model validation of plate deflection is important since conventional figures of merit for the robustness of MTR-type fuel plates under flow, such as the Miller critical velocity, often show a weak correlation with the prediction of stability. Subsequent to this work, irradiation qualification of the MURR LEU fuel element design has begun and will conclude with a full-size demonstration element test.\",\"PeriodicalId\":315864,\"journal\":{\"name\":\"ASME 2019 Power Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/power2019-1928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/power2019-1928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

美国高性能研究堆的低浓铀(LEU)燃料元件设计已由每个反应堆设施进行了优化,以使反应堆能够满足使用单片铀钼燃料的任务、操作和安全基础要求。作为支持密苏里大学研究堆(MURR)向核管理委员会提交的初步安全分析报告(PSAR)的一部分工作,与目前使用的1.27毫米高浓缩铀(HEU)弯曲板厚度相比,薄1.12毫米低浓铀弯曲板的影响已被评估为水力学性能。由于周围冷却剂流道厚度的不同而引起的动水压差可引起板的偏转。在水流试验环中对相关材料试验堆型(mtr型)反应堆板的几何形状进行了实验研究,以验证模拟流致板挠曲的计算模型。利用几种市售的多物理场模拟代码对实验进行了三维流固耦合(FSI)模拟。在模拟中包含板和通道的已建几何形状是与测量的挠度取得良好一致的关键。将验证的计算方法应用于原型MURR LEU板的模型。在名义流动条件下,预测板的小挠度约为5微米。这种偏转明显小于PSAR中冷却剂通道厚度变化的余量。板挠度的实验模型验证是很重要的,因为传统的mtr型燃料板在流动下的鲁棒性指标,如米勒临界速度,往往显示出与稳定性预测的弱相关性。在这项工作之后,MURR低浓铀燃料元件设计的辐照鉴定已经开始,并将以全尺寸示范元件试验结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deflections of Plates in Research Reactor Fuel by Disparities in Thicknesses of Flow Channels
Low-enriched uranium (LEU) fuel element designs for the U.S. high performance research reactors LEU conversion cores have been optimized by each reactor facility to allow the reactors to meet mission, operational, and safety basis requirements using monolithic uranium-molybdenum fuel. As a part of work supporting the Preliminary Safety Analysis Report (PSAR) submitted to the NRC by the University of Missouri Research Reactor (MURR), the impact of thinner 1.12 mm LEU curved fuel plates, compared to the currently used highly-enriched uranium (HEU) curved plate thickness of 1.27 mm, has been assessed for hydro-mechanical performance. Plate deflection can be induced by the hydrodynamic pressure differential caused by differences in the thicknesses of surrounding coolant flow channels. An experimental study was conducted on relevant Materials Test Reactor-type (MTR-type) reactor plate geometries in a water flow test loop to validate computational models simulating flow-induced plate deflection. Three-dimensional fluid-structure interaction (FSI) simulations of the experiments were performed using several commercially available multi-physics simulation codes. Inclusion of as-built geometry of the plates and channels in the simulations was key to achieving good agreement with measured deflections. The validated computational methodology was applied to a model of the prototypic MURR LEU plate. For the nominal flow conditions, a small deflection of the plate on the order of 5 micrometers was predicted. That deflection is significantly less than the allowances in the PSAR for change in coolant channel thickness. The experimental model validation of plate deflection is important since conventional figures of merit for the robustness of MTR-type fuel plates under flow, such as the Miller critical velocity, often show a weak correlation with the prediction of stability. Subsequent to this work, irradiation qualification of the MURR LEU fuel element design has begun and will conclude with a full-size demonstration element test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信