LPV-IO控制器设计:LMI方法

Simon Wollnack, H. Werner
{"title":"LPV-IO控制器设计:LMI方法","authors":"Simon Wollnack, H. Werner","doi":"10.1109/ACC.2016.7526080","DOIUrl":null,"url":null,"abstract":"Stability and ℒ2-performance of linear parameter-varying (LPV) systems in input-output (IO) form are considered. Based on our previous results, novel linear matrix inequality conditions are presented that allow to compute a stabilizing full-order LPV-IO controller which satisfies ℒ2-performance constraints by means of a convex program. The problem of dynamic parameter dependence that usually hinders the derivation of practical stability and performance conditions is avoided completely. An illustrative example demonstrates the merits of the proposed LMI conditions when applied to LPV-IO controller synthesis.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"LPV-IO controller design: An LMI approach\",\"authors\":\"Simon Wollnack, H. Werner\",\"doi\":\"10.1109/ACC.2016.7526080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability and ℒ2-performance of linear parameter-varying (LPV) systems in input-output (IO) form are considered. Based on our previous results, novel linear matrix inequality conditions are presented that allow to compute a stabilizing full-order LPV-IO controller which satisfies ℒ2-performance constraints by means of a convex program. The problem of dynamic parameter dependence that usually hinders the derivation of practical stability and performance conditions is avoided completely. An illustrative example demonstrates the merits of the proposed LMI conditions when applied to LPV-IO controller synthesis.\",\"PeriodicalId\":137983,\"journal\":{\"name\":\"2016 American Control Conference (ACC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2016.7526080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7526080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究了线性变参数系统在输入-输出(IO)形式下的稳定性和二阶性能。在前人研究的基础上,提出了一种新的线性矩阵不等式条件,该条件允许用凸规划的方法计算满足2-性能约束的稳定全阶LPV-IO控制器。完全避免了通常阻碍实际稳定性和性能条件推导的动态参数依赖问题。一个实例说明了所提出的LMI条件在LPV-IO控制器合成中的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LPV-IO controller design: An LMI approach
Stability and ℒ2-performance of linear parameter-varying (LPV) systems in input-output (IO) form are considered. Based on our previous results, novel linear matrix inequality conditions are presented that allow to compute a stabilizing full-order LPV-IO controller which satisfies ℒ2-performance constraints by means of a convex program. The problem of dynamic parameter dependence that usually hinders the derivation of practical stability and performance conditions is avoided completely. An illustrative example demonstrates the merits of the proposed LMI conditions when applied to LPV-IO controller synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信