关于用双曲切线近似布莱克和斯科尔斯公式的注释

M. Mininni, G. Orlando, G. Taglialatela
{"title":"关于用双曲切线近似布莱克和斯科尔斯公式的注释","authors":"M. Mininni, G. Orlando, G. Taglialatela","doi":"10.2139/ssrn.3266556","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the concept of standardized call function and we obtain a new approximating formula for the Black and Scholes call function through the hyperbolic tangent. This formula is useful for pricing and risk management as well as for extracting the implied volatility from quoted options. The latter is of particular importance since it indicates the risk of the underlying and it is the main component of the option's price. Further we estimate numerically the approximating error of the suggested solution and, by comparing our results in computing the implied volatility with the most common methods available in literature we discuss the challenges of this approach.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on approximating the Black and Scholes call formula with hyperbolic tangents\",\"authors\":\"M. Mininni, G. Orlando, G. Taglialatela\",\"doi\":\"10.2139/ssrn.3266556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce the concept of standardized call function and we obtain a new approximating formula for the Black and Scholes call function through the hyperbolic tangent. This formula is useful for pricing and risk management as well as for extracting the implied volatility from quoted options. The latter is of particular importance since it indicates the risk of the underlying and it is the main component of the option's price. Further we estimate numerically the approximating error of the suggested solution and, by comparing our results in computing the implied volatility with the most common methods available in literature we discuss the challenges of this approach.\",\"PeriodicalId\":365755,\"journal\":{\"name\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3266556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3266556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了标准化调用函数的概念,并通过双曲正切得到了Black和Scholes调用函数的一个新的近似公式。该公式对定价和风险管理以及从报价期权中提取隐含波动率都很有用。后者是特别重要的,因为它表明标的的风险,它是期权价格的主要组成部分。此外,我们对建议的解决方案的近似误差进行了数值估计,并通过将计算隐含波动率的结果与文献中最常见的方法进行比较,我们讨论了这种方法的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on approximating the Black and Scholes call formula with hyperbolic tangents
In this paper we introduce the concept of standardized call function and we obtain a new approximating formula for the Black and Scholes call function through the hyperbolic tangent. This formula is useful for pricing and risk management as well as for extracting the implied volatility from quoted options. The latter is of particular importance since it indicates the risk of the underlying and it is the main component of the option's price. Further we estimate numerically the approximating error of the suggested solution and, by comparing our results in computing the implied volatility with the most common methods available in literature we discuss the challenges of this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信