基于压缩感知的SAR图像重建

Alaa El-Ashkar, H. Shendy, W. El-shafai, T. Taha, A. El-Fishawy, Mohamed Abd El-Nabi, F. El-Samie
{"title":"基于压缩感知的SAR图像重建","authors":"Alaa El-Ashkar, H. Shendy, W. El-shafai, T. Taha, A. El-Fishawy, Mohamed Abd El-Nabi, F. El-Samie","doi":"10.1109/ICEEM52022.2021.9480655","DOIUrl":null,"url":null,"abstract":"Synthetic Aperture Radar (SAR) is a common radar imaging technique in a wide range of applications. The SAR imaging relies on keeping eye on targets and imaging from various angles by synchronizing the movement of antenna with the target of interest. The large size of SAR images compared with storage hardware limitations or connection capacity limitations introduced a need of using compression techniques. The primary propose of this paper is to introduce an effective compression technique that can achieve high compression rates, while retaining critical information without damage or loss. Compressed Sensing (CS) represents a reliable, highly dependable and effective choice. This paper introduces a CS technique for SAR image reconstruction. The proposed technique addresses the issue of storing or transmitting large-size SAR images over restricted links, while preventing quality degradation produced by processing. Both Visual and numerical results indicate the success and reliability of the presented technique.","PeriodicalId":352371,"journal":{"name":"2021 International Conference on Electronic Engineering (ICEEM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Compressed Sensing for SAR Image Reconstruction\",\"authors\":\"Alaa El-Ashkar, H. Shendy, W. El-shafai, T. Taha, A. El-Fishawy, Mohamed Abd El-Nabi, F. El-Samie\",\"doi\":\"10.1109/ICEEM52022.2021.9480655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic Aperture Radar (SAR) is a common radar imaging technique in a wide range of applications. The SAR imaging relies on keeping eye on targets and imaging from various angles by synchronizing the movement of antenna with the target of interest. The large size of SAR images compared with storage hardware limitations or connection capacity limitations introduced a need of using compression techniques. The primary propose of this paper is to introduce an effective compression technique that can achieve high compression rates, while retaining critical information without damage or loss. Compressed Sensing (CS) represents a reliable, highly dependable and effective choice. This paper introduces a CS technique for SAR image reconstruction. The proposed technique addresses the issue of storing or transmitting large-size SAR images over restricted links, while preventing quality degradation produced by processing. Both Visual and numerical results indicate the success and reliability of the presented technique.\",\"PeriodicalId\":352371,\"journal\":{\"name\":\"2021 International Conference on Electronic Engineering (ICEEM)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Electronic Engineering (ICEEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEM52022.2021.9480655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electronic Engineering (ICEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEM52022.2021.9480655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

合成孔径雷达(SAR)是一种常用的雷达成像技术,有着广泛的应用。SAR成像依赖于对目标的监视,通过天线与感兴趣目标的同步运动,从多个角度进行成像。与存储硬件限制或连接容量限制相比,SAR图像的大尺寸引入了使用压缩技术的需要。本文的主要建议是引入一种有效的压缩技术,可以实现高压缩率,同时保留关键信息而不会损坏或丢失。压缩感知(CS)是一种可靠、高可靠和有效的选择。本文介绍了一种用于SAR图像重建的CS技术。提出的技术解决了在受限链路上存储或传输大尺寸SAR图像的问题,同时防止了处理产生的质量下降。视觉和数值结果都表明了该方法的成功和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressed Sensing for SAR Image Reconstruction
Synthetic Aperture Radar (SAR) is a common radar imaging technique in a wide range of applications. The SAR imaging relies on keeping eye on targets and imaging from various angles by synchronizing the movement of antenna with the target of interest. The large size of SAR images compared with storage hardware limitations or connection capacity limitations introduced a need of using compression techniques. The primary propose of this paper is to introduce an effective compression technique that can achieve high compression rates, while retaining critical information without damage or loss. Compressed Sensing (CS) represents a reliable, highly dependable and effective choice. This paper introduces a CS technique for SAR image reconstruction. The proposed technique addresses the issue of storing or transmitting large-size SAR images over restricted links, while preventing quality degradation produced by processing. Both Visual and numerical results indicate the success and reliability of the presented technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信