通过多智能体集成的集体适应

A. Bucchiarone
{"title":"通过多智能体集成的集体适应","authors":"A. Bucchiarone","doi":"10.1145/3355562","DOIUrl":null,"url":null,"abstract":"Modern software systems are becoming more and more socio-technical systems composed of distributed and heterogeneous agents from a mixture of people, their environment, and software components. These systems operate under continuous perturbations due to the unpredicted behaviors of people and the occurrence of exogenous changes in the environment. In this article, we introduce a notion of ensembles for which, systems with collective adaptability can be built as an emergent aggregation of autonomous and self-adaptive agents. Building upon this notion of ensemble, we present a distributed adaptation approach for systems composed by ensembles: collections of agents with their respective roles and goals. In these systems, adaptation is triggered by the run-time occurrence of an extraordinary circumstance, called issue. It is handled by an issue resolution process that involves agents affected by the issue to collaboratively adapt with minimal impact on their own preferences. Central to our approach is the implementation of a collective adaptation engine (CAE) able to solve issues in a collective fashion. The approach is instantiated in the context of a smart mobility scenario through which its main features are illustrated. To demonstrate the approach in action and evaluate it, we exploit the DeMOCAS framework, simulating the operation of an urban mobility scenario. We have executed a set of experiments with the goal to show how the CAE performs in terms of feasibility and scalability. With this approach, we are able to demonstrate how collective adaptation opens up new possibilities for tackling urban mobility challenges making it more sustainable respect to selfish and competitive behaviours.","PeriodicalId":377078,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Collective Adaptation through Multi-Agents Ensembles\",\"authors\":\"A. Bucchiarone\",\"doi\":\"10.1145/3355562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern software systems are becoming more and more socio-technical systems composed of distributed and heterogeneous agents from a mixture of people, their environment, and software components. These systems operate under continuous perturbations due to the unpredicted behaviors of people and the occurrence of exogenous changes in the environment. In this article, we introduce a notion of ensembles for which, systems with collective adaptability can be built as an emergent aggregation of autonomous and self-adaptive agents. Building upon this notion of ensemble, we present a distributed adaptation approach for systems composed by ensembles: collections of agents with their respective roles and goals. In these systems, adaptation is triggered by the run-time occurrence of an extraordinary circumstance, called issue. It is handled by an issue resolution process that involves agents affected by the issue to collaboratively adapt with minimal impact on their own preferences. Central to our approach is the implementation of a collective adaptation engine (CAE) able to solve issues in a collective fashion. The approach is instantiated in the context of a smart mobility scenario through which its main features are illustrated. To demonstrate the approach in action and evaluate it, we exploit the DeMOCAS framework, simulating the operation of an urban mobility scenario. We have executed a set of experiments with the goal to show how the CAE performs in terms of feasibility and scalability. With this approach, we are able to demonstrate how collective adaptation opens up new possibilities for tackling urban mobility challenges making it more sustainable respect to selfish and competitive behaviours.\",\"PeriodicalId\":377078,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3355562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

现代软件系统正在成为越来越多的社会技术系统,由来自人、环境和软件组件的混合的分布式和异构代理组成。由于人类不可预测的行为和环境中外生变化的发生,这些系统在持续的扰动下运行。在本文中,我们引入了集成的概念,具有集体适应性的系统可以被构建为自主和自适应代理的紧急聚合。在集成概念的基础上,我们提出了一种分布式自适应方法,用于由集成组成的系统:具有各自角色和目标的代理集合。在这些系统中,适应是由运行时发生的特殊情况(称为问题)触发的。它由问题解决流程处理,该流程涉及受问题影响的代理,这些代理协作适应问题,尽量减少对自身偏好的影响。我们方法的核心是实现能够以集体方式解决问题的集体适应引擎(CAE)。该方法在智能移动场景的上下文中实例化,通过该场景说明了其主要特性。为了演示该方法并对其进行评估,我们利用DeMOCAS框架,模拟城市交通场景的运行。我们已经执行了一组实验,目的是展示CAE在可行性和可伸缩性方面的表现。通过这种方法,我们能够展示集体适应如何为解决城市交通挑战开辟了新的可能性,使其更可持续地尊重自私和竞争行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collective Adaptation through Multi-Agents Ensembles
Modern software systems are becoming more and more socio-technical systems composed of distributed and heterogeneous agents from a mixture of people, their environment, and software components. These systems operate under continuous perturbations due to the unpredicted behaviors of people and the occurrence of exogenous changes in the environment. In this article, we introduce a notion of ensembles for which, systems with collective adaptability can be built as an emergent aggregation of autonomous and self-adaptive agents. Building upon this notion of ensemble, we present a distributed adaptation approach for systems composed by ensembles: collections of agents with their respective roles and goals. In these systems, adaptation is triggered by the run-time occurrence of an extraordinary circumstance, called issue. It is handled by an issue resolution process that involves agents affected by the issue to collaboratively adapt with minimal impact on their own preferences. Central to our approach is the implementation of a collective adaptation engine (CAE) able to solve issues in a collective fashion. The approach is instantiated in the context of a smart mobility scenario through which its main features are illustrated. To demonstrate the approach in action and evaluate it, we exploit the DeMOCAS framework, simulating the operation of an urban mobility scenario. We have executed a set of experiments with the goal to show how the CAE performs in terms of feasibility and scalability. With this approach, we are able to demonstrate how collective adaptation opens up new possibilities for tackling urban mobility challenges making it more sustainable respect to selfish and competitive behaviours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信