植物病害检测与分类的机器学习数据融合

El Mehdi .., A. Saddik
{"title":"植物病害检测与分类的机器学习数据融合","authors":"El Mehdi .., A. Saddik","doi":"10.54216/fpa.080104","DOIUrl":null,"url":null,"abstract":"It is crucial to quickly identify plant diseases since they impede the development of affected plants. Despite the widespread use of Machine Learning (ML) models for this purpose, the recent advances in a subset of ML known as Deep Learning (DL) suggest that this field of study has much room for improvement in terms of detection and classification accuracy. To identify and categorize plant diseases, a wide variety of established and customized DL architectures are deployed with several visual analysis methods. In this study, we use deep learning techniques to create a model for a convolutional neural network that can identify and diagnose plant diseases using very basic photos of healthy and sick plant leaves. The models were trained using an open library of 20639 photos that included both healthy and diseased plants across 15 different classifications. Some model architectures were trained, with the highest performance obtaining a success rate of 97.70% in detecting the correct [plant, illness] pair (or healthy plant). Due to its impressive success rate, the model is a valuable advising or early warning tool, and its technique might be developed to help an integrated plant disease diagnosis system function in actual production settings.","PeriodicalId":269527,"journal":{"name":"Fusion: Practice and Applications","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Data Fusion for Plant Disease Detection and Classification\",\"authors\":\"El Mehdi .., A. Saddik\",\"doi\":\"10.54216/fpa.080104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is crucial to quickly identify plant diseases since they impede the development of affected plants. Despite the widespread use of Machine Learning (ML) models for this purpose, the recent advances in a subset of ML known as Deep Learning (DL) suggest that this field of study has much room for improvement in terms of detection and classification accuracy. To identify and categorize plant diseases, a wide variety of established and customized DL architectures are deployed with several visual analysis methods. In this study, we use deep learning techniques to create a model for a convolutional neural network that can identify and diagnose plant diseases using very basic photos of healthy and sick plant leaves. The models were trained using an open library of 20639 photos that included both healthy and diseased plants across 15 different classifications. Some model architectures were trained, with the highest performance obtaining a success rate of 97.70% in detecting the correct [plant, illness] pair (or healthy plant). Due to its impressive success rate, the model is a valuable advising or early warning tool, and its technique might be developed to help an integrated plant disease diagnosis system function in actual production settings.\",\"PeriodicalId\":269527,\"journal\":{\"name\":\"Fusion: Practice and Applications\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion: Practice and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/fpa.080104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion: Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/fpa.080104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

快速识别植物病害是至关重要的,因为它们阻碍了受影响植物的发育。尽管为此目的广泛使用机器学习(ML)模型,但最近在机器学习子集(称为深度学习(DL))中的进展表明,该研究领域在检测和分类准确性方面还有很大的改进空间。为了识别和分类植物病害,采用多种可视化分析方法部署了各种已建立和定制的DL架构。在这项研究中,我们使用深度学习技术为卷积神经网络创建一个模型,该模型可以使用健康和患病植物叶片的非常基本的照片来识别和诊断植物疾病。这些模型使用一个包含20639张照片的开放库进行训练,其中包括15种不同分类的健康和患病植物。训练了一些模型架构,在检测正确的[植物,疾病]对(或健康植物)方面获得了97.70%的最高成功率。由于其令人印象深刻的成功率,该模型是一种有价值的建议或早期预警工具,其技术可能被开发用于帮助在实际生产环境中发挥作用的综合植物病害诊断系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Data Fusion for Plant Disease Detection and Classification
It is crucial to quickly identify plant diseases since they impede the development of affected plants. Despite the widespread use of Machine Learning (ML) models for this purpose, the recent advances in a subset of ML known as Deep Learning (DL) suggest that this field of study has much room for improvement in terms of detection and classification accuracy. To identify and categorize plant diseases, a wide variety of established and customized DL architectures are deployed with several visual analysis methods. In this study, we use deep learning techniques to create a model for a convolutional neural network that can identify and diagnose plant diseases using very basic photos of healthy and sick plant leaves. The models were trained using an open library of 20639 photos that included both healthy and diseased plants across 15 different classifications. Some model architectures were trained, with the highest performance obtaining a success rate of 97.70% in detecting the correct [plant, illness] pair (or healthy plant). Due to its impressive success rate, the model is a valuable advising or early warning tool, and its technique might be developed to help an integrated plant disease diagnosis system function in actual production settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信