摄动线性时不变系统的可控性和可观察性鲁棒性

Leila Bouazza, B. Mourllion, A. Makhlouf, A. Birouche
{"title":"摄动线性时不变系统的可控性和可观察性鲁棒性","authors":"Leila Bouazza, B. Mourllion, A. Makhlouf, A. Birouche","doi":"10.1109/MED48518.2020.9183331","DOIUrl":null,"url":null,"abstract":"The controllability and observability of a continuous linear time-invariant system (LTI) under perturbations are analyzed in this paper. Based on various mathematical tools, sufficient conditions to ensure controllability of LTI systems are presented. Besides, the perturbed system corresponds to a perturbation of the matrices, and the conditions that have been established are intimately linked to the structure of perturbed system. By duality, the robustness of observability is also ensured under suitable conditions.","PeriodicalId":418518,"journal":{"name":"2020 28th Mediterranean Conference on Control and Automation (MED)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Controllability and observability robustness of perturbed linear time invariant systems\",\"authors\":\"Leila Bouazza, B. Mourllion, A. Makhlouf, A. Birouche\",\"doi\":\"10.1109/MED48518.2020.9183331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The controllability and observability of a continuous linear time-invariant system (LTI) under perturbations are analyzed in this paper. Based on various mathematical tools, sufficient conditions to ensure controllability of LTI systems are presented. Besides, the perturbed system corresponds to a perturbation of the matrices, and the conditions that have been established are intimately linked to the structure of perturbed system. By duality, the robustness of observability is also ensured under suitable conditions.\",\"PeriodicalId\":418518,\"journal\":{\"name\":\"2020 28th Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED48518.2020.9183331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED48518.2020.9183331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分析了摄动作用下连续线性定常系统的可控性和可观测性。利用各种数学工具,给出了LTI系统可控的充分条件。此外,摄动系统对应于矩阵的摄动,所建立的条件与摄动系统的结构密切相关。对偶性还保证了在适当条件下可观测性的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controllability and observability robustness of perturbed linear time invariant systems
The controllability and observability of a continuous linear time-invariant system (LTI) under perturbations are analyzed in this paper. Based on various mathematical tools, sufficient conditions to ensure controllability of LTI systems are presented. Besides, the perturbed system corresponds to a perturbation of the matrices, and the conditions that have been established are intimately linked to the structure of perturbed system. By duality, the robustness of observability is also ensured under suitable conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信