用CESTAC方法求模糊牛顿-柯特积分规则的最优步

S. Noeiaghdam, M. A. Araghi
{"title":"用CESTAC方法求模糊牛顿-柯特积分规则的最优步","authors":"S. Noeiaghdam, M. A. Araghi","doi":"10.5899/2017/JFSVA-00383","DOIUrl":null,"url":null,"abstract":"The aim of this work, is to evaluate the value of a fuzzy integral by applying the Newton-Cotes integration rules via a reliable scheme. In order to perform the numerical examples, the CADNA (Control of Accuracy and Debugging for Numerical Applications) library and the CESTAC (Controle et Estimation Stochastique des Arrondis de Calculs) method are applied based on the stochastic arithmetic. By using this method, the optimal number of points in the fuzzy numerical integration rules and the optimal approximate solution are obtained. Also, the accuracy of the fuzzy quadrature rules are discussed. An algorithm is given to illustrate the implementation of the method. In this case, the termination criterion is considered as the Hausdorff distance between two sequential results to be an informatical zero. Two sample fuzzy integrals are evaluated based on the proposed algorithm to show the importance and advantage of using the stochastic arithmetic in place of the floating-point arithmetic.","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Finding optimal step of fuzzy Newton-Cotes integration rules by using the CESTAC method\",\"authors\":\"S. Noeiaghdam, M. A. Araghi\",\"doi\":\"10.5899/2017/JFSVA-00383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work, is to evaluate the value of a fuzzy integral by applying the Newton-Cotes integration rules via a reliable scheme. In order to perform the numerical examples, the CADNA (Control of Accuracy and Debugging for Numerical Applications) library and the CESTAC (Controle et Estimation Stochastique des Arrondis de Calculs) method are applied based on the stochastic arithmetic. By using this method, the optimal number of points in the fuzzy numerical integration rules and the optimal approximate solution are obtained. Also, the accuracy of the fuzzy quadrature rules are discussed. An algorithm is given to illustrate the implementation of the method. In this case, the termination criterion is considered as the Hausdorff distance between two sequential results to be an informatical zero. Two sample fuzzy integrals are evaluated based on the proposed algorithm to show the importance and advantage of using the stochastic arithmetic in place of the floating-point arithmetic.\",\"PeriodicalId\":308518,\"journal\":{\"name\":\"Journal of Fuzzy Set Valued Analysis\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fuzzy Set Valued Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5899/2017/JFSVA-00383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2017/JFSVA-00383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本工作的目的是通过可靠的格式,应用牛顿-柯特积分规则来评估模糊积分的值。为了进行数值算例,采用了基于随机算法的CADNA (Control of Accuracy and Debugging for numerical Applications)库和CESTAC (Control et Estimation Stochastique des Arrondis de Calculs)方法。利用该方法,得到了模糊数值积分规则的最优点数和最优近似解。同时,讨论了模糊正交规则的准确性。给出了一种算法来说明该方法的实现。在这种情况下,终止准则被认为是两个连续结果之间的豪斯多夫距离为信息零。在此基础上对两个样本模糊积分进行了计算,说明了用随机算法代替浮点算法的重要性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding optimal step of fuzzy Newton-Cotes integration rules by using the CESTAC method
The aim of this work, is to evaluate the value of a fuzzy integral by applying the Newton-Cotes integration rules via a reliable scheme. In order to perform the numerical examples, the CADNA (Control of Accuracy and Debugging for Numerical Applications) library and the CESTAC (Controle et Estimation Stochastique des Arrondis de Calculs) method are applied based on the stochastic arithmetic. By using this method, the optimal number of points in the fuzzy numerical integration rules and the optimal approximate solution are obtained. Also, the accuracy of the fuzzy quadrature rules are discussed. An algorithm is given to illustrate the implementation of the method. In this case, the termination criterion is considered as the Hausdorff distance between two sequential results to be an informatical zero. Two sample fuzzy integrals are evaluated based on the proposed algorithm to show the importance and advantage of using the stochastic arithmetic in place of the floating-point arithmetic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信