基于m步前瞻的最大频繁项集高效挖掘

Elijah L. Meyer, S. M. Chung
{"title":"基于m步前瞻的最大频繁项集高效挖掘","authors":"Elijah L. Meyer, S. M. Chung","doi":"10.1109/ICODSE.2018.8705805","DOIUrl":null,"url":null,"abstract":"We propose a new maximal frequent itemset mining algorithm, named m-step lookahead. This is a variant of the Max-Miner algorithm that, instead of counting the support of the largest possible superset of each candidate itemset, counts the support of a superset with a predetermined length. This is designed to circumvent the weakness in the Max-Miner algorithm that the probability of finding a frequent superset is extremely low for the first several passes. By looking for a smaller superset, m-step lookahead may find long frequent patterns more quickly than Max-Miner. Our experimental results demonstrate that this is the case for certain datasets and user-defined parameters.","PeriodicalId":362422,"journal":{"name":"2018 5th International Conference on Data and Software Engineering (ICoDSE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Mining of Maximal Frequent Itemsets Based on M-Step Lookahead\",\"authors\":\"Elijah L. Meyer, S. M. Chung\",\"doi\":\"10.1109/ICODSE.2018.8705805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new maximal frequent itemset mining algorithm, named m-step lookahead. This is a variant of the Max-Miner algorithm that, instead of counting the support of the largest possible superset of each candidate itemset, counts the support of a superset with a predetermined length. This is designed to circumvent the weakness in the Max-Miner algorithm that the probability of finding a frequent superset is extremely low for the first several passes. By looking for a smaller superset, m-step lookahead may find long frequent patterns more quickly than Max-Miner. Our experimental results demonstrate that this is the case for certain datasets and user-defined parameters.\",\"PeriodicalId\":362422,\"journal\":{\"name\":\"2018 5th International Conference on Data and Software Engineering (ICoDSE)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Data and Software Engineering (ICoDSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICODSE.2018.8705805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2018.8705805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的最大频繁项集挖掘算法——m步超前挖掘算法。这是Max-Miner算法的一种变体,它不是计算每个候选项集的最大可能超集的支持度,而是计算具有预定长度的超集的支持度。这是为了规避Max-Miner算法的弱点,即在前几次传递中找到频繁超集的概率非常低。通过寻找一个更小的超集,m步预测可以比Max-Miner更快地找到长频率模式。我们的实验结果表明,对于某些数据集和用户定义的参数是这种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Mining of Maximal Frequent Itemsets Based on M-Step Lookahead
We propose a new maximal frequent itemset mining algorithm, named m-step lookahead. This is a variant of the Max-Miner algorithm that, instead of counting the support of the largest possible superset of each candidate itemset, counts the support of a superset with a predetermined length. This is designed to circumvent the weakness in the Max-Miner algorithm that the probability of finding a frequent superset is extremely low for the first several passes. By looking for a smaller superset, m-step lookahead may find long frequent patterns more quickly than Max-Miner. Our experimental results demonstrate that this is the case for certain datasets and user-defined parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信