无线5G网络功率控制的分布式平均成本强化学习方法

A. Ornatelli, A. Giuseppi, A. Tortorelli
{"title":"无线5G网络功率控制的分布式平均成本强化学习方法","authors":"A. Ornatelli, A. Giuseppi, A. Tortorelli","doi":"10.1109/aiiot54504.2022.9817168","DOIUrl":null,"url":null,"abstract":"This paper deals with the transmission power control problem in wireless networks. Such a problem represents a well known and relevant issue as it allows to efficiently manage the network's required energy and the interference experienced by end-users. With the widespread diffusion of smart devices, the relevance of this aspect further increased and has been identified as such also in 5G standards. The problem has been formalized as a Multi-Agent Reinforcement Learning approach (MARL) to guarantee scalability and robustness. These two aspects also drove the development of an original Distributed Average-Cost Temporal-Difference (TD) Learning algorithm. To adopt such an algorithm, a Markov Game formulation of the power control problem has also been derived. The effectiveness of the proposed distributed framework in reducing the total network's transmission power has been proved by means of simulations in a specific case study.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Distributed Average Cost Reinforcement Learning approach for Power Control in Wireless 5G Networks\",\"authors\":\"A. Ornatelli, A. Giuseppi, A. Tortorelli\",\"doi\":\"10.1109/aiiot54504.2022.9817168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the transmission power control problem in wireless networks. Such a problem represents a well known and relevant issue as it allows to efficiently manage the network's required energy and the interference experienced by end-users. With the widespread diffusion of smart devices, the relevance of this aspect further increased and has been identified as such also in 5G standards. The problem has been formalized as a Multi-Agent Reinforcement Learning approach (MARL) to guarantee scalability and robustness. These two aspects also drove the development of an original Distributed Average-Cost Temporal-Difference (TD) Learning algorithm. To adopt such an algorithm, a Markov Game formulation of the power control problem has also been derived. The effectiveness of the proposed distributed framework in reducing the total network's transmission power has been proved by means of simulations in a specific case study.\",\"PeriodicalId\":409264,\"journal\":{\"name\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aiiot54504.2022.9817168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究无线网络中的传输功率控制问题。这样的问题代表了一个众所周知的相关问题,因为它允许有效地管理网络所需的能量和最终用户所经历的干扰。随着智能设备的广泛普及,这方面的相关性进一步增加,并且在5G标准中也被确定为这样。该问题已被形式化为多智能体强化学习方法(MARL),以保证可扩展性和鲁棒性。这两个方面也推动了原始分布式平均成本时间差(TD)学习算法的发展。为了采用这种算法,还推导了功率控制问题的马尔可夫博弈公式。通过具体案例的仿真,验证了所提出的分布式框架在降低网络总传输功率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Distributed Average Cost Reinforcement Learning approach for Power Control in Wireless 5G Networks
This paper deals with the transmission power control problem in wireless networks. Such a problem represents a well known and relevant issue as it allows to efficiently manage the network's required energy and the interference experienced by end-users. With the widespread diffusion of smart devices, the relevance of this aspect further increased and has been identified as such also in 5G standards. The problem has been formalized as a Multi-Agent Reinforcement Learning approach (MARL) to guarantee scalability and robustness. These two aspects also drove the development of an original Distributed Average-Cost Temporal-Difference (TD) Learning algorithm. To adopt such an algorithm, a Markov Game formulation of the power control problem has also been derived. The effectiveness of the proposed distributed framework in reducing the total network's transmission power has been proved by means of simulations in a specific case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信