在美元指数丢番图方程(6米^ {2}+ 1)^ {x} + (3 m ^ {2} 1) ^ {y} =(3米)^ {z} $

M. Alan, Ruhsar Gizem Bi̇ratli
{"title":"在美元指数丢番图方程(6米^ {2}+ 1)^ {x} + (3 m ^ {2} 1) ^ {y} =(3米)^ {z} $","authors":"M. Alan, Ruhsar Gizem Bi̇ratli","doi":"10.33401/fujma.1038699","DOIUrl":null,"url":null,"abstract":"Let $m$ be a positive integer. In this paper we consider the exponential Diophantine equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$ and we show that it has only unique positive integer solution $(x,y,z)=(1,1,2)$ for all $ m>1. $ The proof depends on so called classification method and famous primitive divisor theorem.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$\",\"authors\":\"M. Alan, Ruhsar Gizem Bi̇ratli\",\"doi\":\"10.33401/fujma.1038699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $m$ be a positive integer. In this paper we consider the exponential Diophantine equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$ and we show that it has only unique positive integer solution $(x,y,z)=(1,1,2)$ for all $ m>1. $ The proof depends on so called classification method and famous primitive divisor theorem.\",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/fujma.1038699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.1038699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设m为正整数。本文考虑指数丢芬图方程$(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$,并证明对于所有$ m>1,它只有唯一的正整数解$(x,y,z)=(1,1,2)$。这个证明依赖于所谓的分类方法和著名的原始因子定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$
Let $m$ be a positive integer. In this paper we consider the exponential Diophantine equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$ and we show that it has only unique positive integer solution $(x,y,z)=(1,1,2)$ for all $ m>1. $ The proof depends on so called classification method and famous primitive divisor theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信