有界域上伪多谐div-旋度和弹性插值的收敛性和误差估计

M. Benbourhim, A. Bouhamidi, Pedro González-Casanova
{"title":"有界域上伪多谐div-旋度和弹性插值的收敛性和误差估计","authors":"M. Benbourhim, A. Bouhamidi, Pedro González-Casanova","doi":"10.33993/jnaat521-1306","DOIUrl":null,"url":null,"abstract":"This paper establishes convergence rates and error estimates for the pseudo-polyharmonic div-curl and elastic interpolation. This type of interpolation is based on a combination of the divergence and the curl of a multivariate vector field and minimizing an appropriate functional energy related to the divergence and curl. Convergence rates and error estimates are established when the interpolated vector field is assumed to be in the classical fractional vectorial Sobolev space on an open bounded set with a Lipschitz-continuous boundary. The error estimates introduced in this work are sharp and the rate of convergence depends algebraically on the fill distance of the scattered data nodes. More precisely, the order of convergence depends, essentially, on the smoothness of the target vector field, on the dimension of the Euclidean space and on the null space of corresponding Sobolev semi-norm.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence and error estimates for pseudo-polyharmonic div-curl and elastic interpolation on a bounded domain\",\"authors\":\"M. Benbourhim, A. Bouhamidi, Pedro González-Casanova\",\"doi\":\"10.33993/jnaat521-1306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes convergence rates and error estimates for the pseudo-polyharmonic div-curl and elastic interpolation. This type of interpolation is based on a combination of the divergence and the curl of a multivariate vector field and minimizing an appropriate functional energy related to the divergence and curl. Convergence rates and error estimates are established when the interpolated vector field is assumed to be in the classical fractional vectorial Sobolev space on an open bounded set with a Lipschitz-continuous boundary. The error estimates introduced in this work are sharp and the rate of convergence depends algebraically on the fill distance of the scattered data nodes. More precisely, the order of convergence depends, essentially, on the smoothness of the target vector field, on the dimension of the Euclidean space and on the null space of corresponding Sobolev semi-norm.\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat521-1306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat521-1306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了伪多谐分旋和弹性插值的收敛速率和误差估计。这种类型的插值是基于多元向量场的散度和旋度的组合,并最小化与散度和旋度相关的适当函数能量。将插值向量场设为具有lipschitz -连续边界的开有界集合上的经典分数向量Sobolev空间,建立了插值向量场的收敛速率和误差估计。本文中引入的误差估计是尖锐的,收敛速度在代数上取决于分散数据节点的填充距离。更准确地说,收敛的阶数本质上取决于目标向量场的平滑度、欧氏空间的维数以及相应的Sobolev半范数的零空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence and error estimates for pseudo-polyharmonic div-curl and elastic interpolation on a bounded domain
This paper establishes convergence rates and error estimates for the pseudo-polyharmonic div-curl and elastic interpolation. This type of interpolation is based on a combination of the divergence and the curl of a multivariate vector field and minimizing an appropriate functional energy related to the divergence and curl. Convergence rates and error estimates are established when the interpolated vector field is assumed to be in the classical fractional vectorial Sobolev space on an open bounded set with a Lipschitz-continuous boundary. The error estimates introduced in this work are sharp and the rate of convergence depends algebraically on the fill distance of the scattered data nodes. More precisely, the order of convergence depends, essentially, on the smoothness of the target vector field, on the dimension of the Euclidean space and on the null space of corresponding Sobolev semi-norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信