{"title":"体素数据中平面结构的快速可视化","authors":"S. Prohaska, H. Hege","doi":"10.1109/VISUAL.2002.1183753","DOIUrl":null,"url":null,"abstract":"We present a robust, noise-resistant criterion characterizing plane-like skeletons in binary voxel objects. It is based on a distance map and the geodesic distance along the object's boundary. A parameter allows us to control the noise sensitivity. If needed, homotopy with the original object might be reconstructed in a second step, using an improved distance ordered thinning algorithm. The skeleton is analyzed to create a geometric representation for rendering. Plane-like parts are transformed into an triangulated surface not enclosing a volume by a suitable triangulation scheme. The resulting surfaces have lower triangle count than those created with standard methods and tend to maintain the original geometry, even after simplification with a high decimation rate. Our algorithm allows us to interactively render expressive images of complex 3D structures, emphasizing independently plane-like and rod-like structures. The methods are applied for visualization of the microstructure of bone biopsies.","PeriodicalId":196064,"journal":{"name":"IEEE Visualization, 2002. VIS 2002.","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Fast visualization of plane-like structures in voxel data\",\"authors\":\"S. Prohaska, H. Hege\",\"doi\":\"10.1109/VISUAL.2002.1183753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a robust, noise-resistant criterion characterizing plane-like skeletons in binary voxel objects. It is based on a distance map and the geodesic distance along the object's boundary. A parameter allows us to control the noise sensitivity. If needed, homotopy with the original object might be reconstructed in a second step, using an improved distance ordered thinning algorithm. The skeleton is analyzed to create a geometric representation for rendering. Plane-like parts are transformed into an triangulated surface not enclosing a volume by a suitable triangulation scheme. The resulting surfaces have lower triangle count than those created with standard methods and tend to maintain the original geometry, even after simplification with a high decimation rate. Our algorithm allows us to interactively render expressive images of complex 3D structures, emphasizing independently plane-like and rod-like structures. The methods are applied for visualization of the microstructure of bone biopsies.\",\"PeriodicalId\":196064,\"journal\":{\"name\":\"IEEE Visualization, 2002. VIS 2002.\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2002. VIS 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2002.1183753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2002. VIS 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2002.1183753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast visualization of plane-like structures in voxel data
We present a robust, noise-resistant criterion characterizing plane-like skeletons in binary voxel objects. It is based on a distance map and the geodesic distance along the object's boundary. A parameter allows us to control the noise sensitivity. If needed, homotopy with the original object might be reconstructed in a second step, using an improved distance ordered thinning algorithm. The skeleton is analyzed to create a geometric representation for rendering. Plane-like parts are transformed into an triangulated surface not enclosing a volume by a suitable triangulation scheme. The resulting surfaces have lower triangle count than those created with standard methods and tend to maintain the original geometry, even after simplification with a high decimation rate. Our algorithm allows us to interactively render expressive images of complex 3D structures, emphasizing independently plane-like and rod-like structures. The methods are applied for visualization of the microstructure of bone biopsies.