灰度图像参数估计的反向传播网络研究

T. Feng, Z. Houkes, M. Korsten, L. Spreeuwers
{"title":"灰度图像参数估计的反向传播网络研究","authors":"T. Feng, Z. Houkes, M. Korsten, L. Spreeuwers","doi":"10.1109/IJCNN.1991.170423","DOIUrl":null,"url":null,"abstract":"A large number of experiments have been done on the basic research of parameter estimation from images with neural networks. To obtain a better estimation accuracy of parameters and to decrease needed storage space and computation time, the architecture of networks, the effective learning rate and momentum, and the selection of training set are investigated. A comparison of network performance to that of the least squares estimator is made. The internal representations in trained networks, i.e. input-to-hidden weight maps or measuring models, which include statistical features of training images and have a clear physical and geometrical meaning, and the internal components of output parameters given by outputs of hidden neurons are presented.<<ETX>>","PeriodicalId":211135,"journal":{"name":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A study on backpropagation networks for parameter estimation from grey-scale images\",\"authors\":\"T. Feng, Z. Houkes, M. Korsten, L. Spreeuwers\",\"doi\":\"10.1109/IJCNN.1991.170423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large number of experiments have been done on the basic research of parameter estimation from images with neural networks. To obtain a better estimation accuracy of parameters and to decrease needed storage space and computation time, the architecture of networks, the effective learning rate and momentum, and the selection of training set are investigated. A comparison of network performance to that of the least squares estimator is made. The internal representations in trained networks, i.e. input-to-hidden weight maps or measuring models, which include statistical features of training images and have a clear physical and geometrical meaning, and the internal components of output parameters given by outputs of hidden neurons are presented.<<ETX>>\",\"PeriodicalId\":211135,\"journal\":{\"name\":\"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1991.170423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1991.170423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用神经网络对图像进行参数估计的基础研究已经进行了大量的实验。为了获得更好的参数估计精度,减少所需的存储空间和计算时间,研究了网络的结构、有效学习率和动量以及训练集的选择。将网络性能与最小二乘估计进行了比较。给出了训练网络的内部表征,即包含训练图像的统计特征并具有明确物理和几何意义的输入到隐藏权重映射或测量模型,以及隐藏神经元输出给出的输出参数的内部分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on backpropagation networks for parameter estimation from grey-scale images
A large number of experiments have been done on the basic research of parameter estimation from images with neural networks. To obtain a better estimation accuracy of parameters and to decrease needed storage space and computation time, the architecture of networks, the effective learning rate and momentum, and the selection of training set are investigated. A comparison of network performance to that of the least squares estimator is made. The internal representations in trained networks, i.e. input-to-hidden weight maps or measuring models, which include statistical features of training images and have a clear physical and geometrical meaning, and the internal components of output parameters given by outputs of hidden neurons are presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信