Sage-Husa自适应滤波算法在SINS高精度初始对准中的应用

S. Wan-xin
{"title":"Sage-Husa自适应滤波算法在SINS高精度初始对准中的应用","authors":"S. Wan-xin","doi":"10.1109/ICCWAMTIP.2014.7073426","DOIUrl":null,"url":null,"abstract":"When the system model and noise statistical characteristics are known, the conventional Kalman filtering algorithm is suitable. In most cases, the noise statistics are unknown. To improve the alignment precision and convergence speed of strap-down inertial navigation system, an initial alignment method based on Sage-Husa adaptive filter is proposed. Automatic on-line estimation and correction for the noise parameters, the state of the system and the state estimate covariance by the observed data. Using forgetting factor can limit memory length of the filter, which could enhance the effect the newly observed data acts on the present estimation. Thus, enable the system to achieve the best filtering effect. Through simulation verifiable, the adaptive Kalman filter algorithm, improve the convergence speed and alignment accuracy effectively.","PeriodicalId":211273,"journal":{"name":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Application of Sage-Husa adaptive filtering algorithm for high precision SINS initial alignment\",\"authors\":\"S. Wan-xin\",\"doi\":\"10.1109/ICCWAMTIP.2014.7073426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the system model and noise statistical characteristics are known, the conventional Kalman filtering algorithm is suitable. In most cases, the noise statistics are unknown. To improve the alignment precision and convergence speed of strap-down inertial navigation system, an initial alignment method based on Sage-Husa adaptive filter is proposed. Automatic on-line estimation and correction for the noise parameters, the state of the system and the state estimate covariance by the observed data. Using forgetting factor can limit memory length of the filter, which could enhance the effect the newly observed data acts on the present estimation. Thus, enable the system to achieve the best filtering effect. Through simulation verifiable, the adaptive Kalman filter algorithm, improve the convergence speed and alignment accuracy effectively.\",\"PeriodicalId\":211273,\"journal\":{\"name\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2014.7073426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2014.7073426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

当系统模型和噪声统计特性已知时,传统的卡尔曼滤波算法是合适的。在大多数情况下,噪声统计是未知的。为了提高捷联惯导系统的对准精度和收敛速度,提出了一种基于Sage-Husa自适应滤波的初始对准方法。利用观测数据对噪声参数、系统状态和状态估计协方差进行自动在线估计和校正。使用遗忘因子可以限制滤波器的记忆长度,从而增强新观测到的数据对当前估计的影响。从而使系统达到最佳的滤波效果。通过仿真验证,自适应卡尔曼滤波算法有效地提高了收敛速度和对准精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Sage-Husa adaptive filtering algorithm for high precision SINS initial alignment
When the system model and noise statistical characteristics are known, the conventional Kalman filtering algorithm is suitable. In most cases, the noise statistics are unknown. To improve the alignment precision and convergence speed of strap-down inertial navigation system, an initial alignment method based on Sage-Husa adaptive filter is proposed. Automatic on-line estimation and correction for the noise parameters, the state of the system and the state estimate covariance by the observed data. Using forgetting factor can limit memory length of the filter, which could enhance the effect the newly observed data acts on the present estimation. Thus, enable the system to achieve the best filtering effect. Through simulation verifiable, the adaptive Kalman filter algorithm, improve the convergence speed and alignment accuracy effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信