基于知识的自适应阈值导弹跟踪

S. Haker, G. Sapiro, A. Tannenbaum, D. Washburn
{"title":"基于知识的自适应阈值导弹跟踪","authors":"S. Haker, G. Sapiro, A. Tannenbaum, D. Washburn","doi":"10.1109/ICIP.2001.959163","DOIUrl":null,"url":null,"abstract":"We apply a knowledge-based segmentation method developed for still and video images to the problem of tracking missiles and high speed projectiles. Since we are only interested in segmenting a portion of the missile (namely, the nose cone), we use our segmentation procedure as a method of adapting thresholding. The key idea is to utilize a priori knowledge about the objects present in the image, e.g. missile and background, introduced via Bayes' rule. Posterior probabilities obtained in this way are anisotropically smoothed, and the image segmentation is obtained via MAP classifications of the smoothed data. When segmenting sequences of images, the smoothed posterior probabilities of past frames are used as prior distributions in succeeding frames.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Missile tracking using knowledge-based adaptive thresholding\",\"authors\":\"S. Haker, G. Sapiro, A. Tannenbaum, D. Washburn\",\"doi\":\"10.1109/ICIP.2001.959163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply a knowledge-based segmentation method developed for still and video images to the problem of tracking missiles and high speed projectiles. Since we are only interested in segmenting a portion of the missile (namely, the nose cone), we use our segmentation procedure as a method of adapting thresholding. The key idea is to utilize a priori knowledge about the objects present in the image, e.g. missile and background, introduced via Bayes' rule. Posterior probabilities obtained in this way are anisotropically smoothed, and the image segmentation is obtained via MAP classifications of the smoothed data. When segmenting sequences of images, the smoothed posterior probabilities of past frames are used as prior distributions in succeeding frames.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.959163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.959163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

我们将一种基于知识的静态和视频图像分割方法应用于导弹和高速弹丸的跟踪问题。由于我们只对分割导弹的一部分(即鼻锥)感兴趣,因此我们使用分割过程作为自适应阈值的方法。关键思想是利用通过贝叶斯规则引入的关于图像中存在的物体的先验知识,例如导弹和背景。通过这种方法得到的后验概率进行各向异性平滑,并对平滑后的数据进行MAP分类得到图像分割。在对图像序列进行分割时,使用平滑后验概率作为后续帧的先验分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Missile tracking using knowledge-based adaptive thresholding
We apply a knowledge-based segmentation method developed for still and video images to the problem of tracking missiles and high speed projectiles. Since we are only interested in segmenting a portion of the missile (namely, the nose cone), we use our segmentation procedure as a method of adapting thresholding. The key idea is to utilize a priori knowledge about the objects present in the image, e.g. missile and background, introduced via Bayes' rule. Posterior probabilities obtained in this way are anisotropically smoothed, and the image segmentation is obtained via MAP classifications of the smoothed data. When segmenting sequences of images, the smoothed posterior probabilities of past frames are used as prior distributions in succeeding frames.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信