基于图像和三维数据的室外场景显著区域分割

Gunhee Kim, Daniel F. Huber, M. Hebert
{"title":"基于图像和三维数据的室外场景显著区域分割","authors":"Gunhee Kim, Daniel F. Huber, M. Hebert","doi":"10.1109/WACV.2008.4544014","DOIUrl":null,"url":null,"abstract":"This paper describes a segmentation method for extracting salient regions in outdoor scenes using both 3-D laser scans and imagery information. Our approach is a bottom- up attentive process without any high-level priors, models, or learning. As a mid-level vision task, it is not only robust against noise and outliers but it also provides valuable information for other high-level tasks in the form of optimal segments and their ranked saliency. In this paper, we propose a new saliency definition for 3-D point clouds and we incorporate it with saliency features from color information.","PeriodicalId":439571,"journal":{"name":"2008 IEEE Workshop on Applications of Computer Vision","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data\",\"authors\":\"Gunhee Kim, Daniel F. Huber, M. Hebert\",\"doi\":\"10.1109/WACV.2008.4544014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a segmentation method for extracting salient regions in outdoor scenes using both 3-D laser scans and imagery information. Our approach is a bottom- up attentive process without any high-level priors, models, or learning. As a mid-level vision task, it is not only robust against noise and outliers but it also provides valuable information for other high-level tasks in the form of optimal segments and their ranked saliency. In this paper, we propose a new saliency definition for 3-D point clouds and we incorporate it with saliency features from color information.\",\"PeriodicalId\":439571,\"journal\":{\"name\":\"2008 IEEE Workshop on Applications of Computer Vision\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Workshop on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2008.4544014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2008.4544014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文提出了一种结合三维激光扫描和图像信息提取室外场景显著区域的分割方法。我们的方法是一个自下而上的细心过程,没有任何高级的先验、模型或学习。作为一种中级视觉任务,它不仅对噪声和异常值具有鲁棒性,而且还以最优分段及其排名显著性的形式为其他高级任务提供了有价值的信息。本文提出了一种新的三维点云的显著性定义,并将其与颜色信息的显著性特征相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data
This paper describes a segmentation method for extracting salient regions in outdoor scenes using both 3-D laser scans and imagery information. Our approach is a bottom- up attentive process without any high-level priors, models, or learning. As a mid-level vision task, it is not only robust against noise and outliers but it also provides valuable information for other high-level tasks in the form of optimal segments and their ranked saliency. In this paper, we propose a new saliency definition for 3-D point clouds and we incorporate it with saliency features from color information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信