{"title":"基于图像和三维数据的室外场景显著区域分割","authors":"Gunhee Kim, Daniel F. Huber, M. Hebert","doi":"10.1109/WACV.2008.4544014","DOIUrl":null,"url":null,"abstract":"This paper describes a segmentation method for extracting salient regions in outdoor scenes using both 3-D laser scans and imagery information. Our approach is a bottom- up attentive process without any high-level priors, models, or learning. As a mid-level vision task, it is not only robust against noise and outliers but it also provides valuable information for other high-level tasks in the form of optimal segments and their ranked saliency. In this paper, we propose a new saliency definition for 3-D point clouds and we incorporate it with saliency features from color information.","PeriodicalId":439571,"journal":{"name":"2008 IEEE Workshop on Applications of Computer Vision","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data\",\"authors\":\"Gunhee Kim, Daniel F. Huber, M. Hebert\",\"doi\":\"10.1109/WACV.2008.4544014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a segmentation method for extracting salient regions in outdoor scenes using both 3-D laser scans and imagery information. Our approach is a bottom- up attentive process without any high-level priors, models, or learning. As a mid-level vision task, it is not only robust against noise and outliers but it also provides valuable information for other high-level tasks in the form of optimal segments and their ranked saliency. In this paper, we propose a new saliency definition for 3-D point clouds and we incorporate it with saliency features from color information.\",\"PeriodicalId\":439571,\"journal\":{\"name\":\"2008 IEEE Workshop on Applications of Computer Vision\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Workshop on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2008.4544014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2008.4544014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data
This paper describes a segmentation method for extracting salient regions in outdoor scenes using both 3-D laser scans and imagery information. Our approach is a bottom- up attentive process without any high-level priors, models, or learning. As a mid-level vision task, it is not only robust against noise and outliers but it also provides valuable information for other high-level tasks in the form of optimal segments and their ranked saliency. In this paper, we propose a new saliency definition for 3-D point clouds and we incorporate it with saliency features from color information.