如何在空间框架中建模协方差结构:方差函数还是相关函数?

Giovanni Pistone, G. Vicario
{"title":"如何在空间框架中建模协方差结构:方差函数还是相关函数?","authors":"Giovanni Pistone, G. Vicario","doi":"10.1002/9781119721611.ch10","DOIUrl":null,"url":null,"abstract":"The basic Kriging's model assumes a Gaussian distribution with stationary mean and stationary variance. In such a setting, the joint distribution of the spatial process is characterized by the common variance and the correlation matrix or, equivalently, by the common variance and the variogram matrix. We discuss in in detail the option to actually use the variogram as a parameterization.","PeriodicalId":378326,"journal":{"name":"Data Analysis and Applications 4","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"How to Model the Covariance Structure in a Spatial Framework: Variogram or Correlation Function?\",\"authors\":\"Giovanni Pistone, G. Vicario\",\"doi\":\"10.1002/9781119721611.ch10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The basic Kriging's model assumes a Gaussian distribution with stationary mean and stationary variance. In such a setting, the joint distribution of the spatial process is characterized by the common variance and the correlation matrix or, equivalently, by the common variance and the variogram matrix. We discuss in in detail the option to actually use the variogram as a parameterization.\",\"PeriodicalId\":378326,\"journal\":{\"name\":\"Data Analysis and Applications 4\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Analysis and Applications 4\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119721611.ch10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Analysis and Applications 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119721611.ch10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Kriging的基本模型假设高斯分布具有平稳的均值和平稳的方差。在这种情况下,空间过程的联合分布的特征是共同方差和相关矩阵,或者等价地,共同方差和变异函数矩阵。我们将详细讨论实际使用变差函数作为参数化的选项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Model the Covariance Structure in a Spatial Framework: Variogram or Correlation Function?
The basic Kriging's model assumes a Gaussian distribution with stationary mean and stationary variance. In such a setting, the joint distribution of the spatial process is characterized by the common variance and the correlation matrix or, equivalently, by the common variance and the variogram matrix. We discuss in in detail the option to actually use the variogram as a parameterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信