基于三维注意初始卷积神经网络的深度假视频检测

Changlei Lu, B. Liu, Wenbo Zhou, Qi Chu, Nenghai Yu
{"title":"基于三维注意初始卷积神经网络的深度假视频检测","authors":"Changlei Lu, B. Liu, Wenbo Zhou, Qi Chu, Nenghai Yu","doi":"10.1109/ICIP42928.2021.9506381","DOIUrl":null,"url":null,"abstract":"The current spike of deepfake techniques has received considerable attention due to security concerns. To mitigate the potential risks brought by deepfake techniques, many detection methods have been proposed. However, most existing works merely leverage spatial information from separate frames and ignore valuable inter-frame temporal information. In this paper, we propose a deepfake detection scheme that uses 3D-attentional inception network. The proposed model encompasses both spatial and temporal information simultaneously with the 3D kernels. Furthermore, the channel and spatial-temporal attention modules are applied to improve detection capabilities. Comprehensive experiments demonstrate that our scheme outperforms state-of-the-art methods.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Deepfake Video Detection Using 3D-Attentional Inception Convolutional Neural Network\",\"authors\":\"Changlei Lu, B. Liu, Wenbo Zhou, Qi Chu, Nenghai Yu\",\"doi\":\"10.1109/ICIP42928.2021.9506381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current spike of deepfake techniques has received considerable attention due to security concerns. To mitigate the potential risks brought by deepfake techniques, many detection methods have been proposed. However, most existing works merely leverage spatial information from separate frames and ignore valuable inter-frame temporal information. In this paper, we propose a deepfake detection scheme that uses 3D-attentional inception network. The proposed model encompasses both spatial and temporal information simultaneously with the 3D kernels. Furthermore, the channel and spatial-temporal attention modules are applied to improve detection capabilities. Comprehensive experiments demonstrate that our scheme outperforms state-of-the-art methods.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

出于安全考虑,目前深度伪造技术的激增受到了相当大的关注。为了降低深度伪造技术带来的潜在风险,人们提出了许多检测方法。然而,大多数现有的作品仅仅利用了来自单独帧的空间信息,而忽略了有价值的帧间时间信息。在本文中,我们提出了一种使用三维注意初始网络的深度伪造检测方案。该模型同时包含三维核的空间和时间信息。此外,还采用了信道和时空注意模块来提高检测能力。综合实验表明,我们的方案优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deepfake Video Detection Using 3D-Attentional Inception Convolutional Neural Network
The current spike of deepfake techniques has received considerable attention due to security concerns. To mitigate the potential risks brought by deepfake techniques, many detection methods have been proposed. However, most existing works merely leverage spatial information from separate frames and ignore valuable inter-frame temporal information. In this paper, we propose a deepfake detection scheme that uses 3D-attentional inception network. The proposed model encompasses both spatial and temporal information simultaneously with the 3D kernels. Furthermore, the channel and spatial-temporal attention modules are applied to improve detection capabilities. Comprehensive experiments demonstrate that our scheme outperforms state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信