利用共模模型理解汽车逆变器的传导排放

P. Hillenbrand, S. Tenbohlen, C. Keller, K. Spanos
{"title":"利用共模模型理解汽车逆变器的传导排放","authors":"P. Hillenbrand, S. Tenbohlen, C. Keller, K. Spanos","doi":"10.1109/ISEMC.2015.7256246","DOIUrl":null,"url":null,"abstract":"This contribution presents results from an investigation into conducted emissions of an automotive inverter in a component level EMC test setup with unshielded cables. The primary goal of the investigation is to develop a profound understanding of the shape of the disturbance voltage's frequency spectrum at the line impedance stabilization network. Complying with that objective, common-mode currents are identified as the dominating noise currents, especially at the operating point of the inverter representing the worst case scenario regarding EMC performance. To support this conclusion, an AC simulation of a single-phase common-mode equivalent circuit of the system is presented. The resonances occurring in the noise spectrum and its overall shape are explained by the simulation within the frequency range of 100 kHz to 110 MHz. In addition, CY capacitors are used as common-mode filter elements. Based on the validated simulation model, the influence of the filter capacitors and their parasitic inductances are investigated.","PeriodicalId":412708,"journal":{"name":"2015 IEEE International Symposium on Electromagnetic Compatibility (EMC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Understanding conducted emissions from an automotive inverter using a common-mode model\",\"authors\":\"P. Hillenbrand, S. Tenbohlen, C. Keller, K. Spanos\",\"doi\":\"10.1109/ISEMC.2015.7256246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution presents results from an investigation into conducted emissions of an automotive inverter in a component level EMC test setup with unshielded cables. The primary goal of the investigation is to develop a profound understanding of the shape of the disturbance voltage's frequency spectrum at the line impedance stabilization network. Complying with that objective, common-mode currents are identified as the dominating noise currents, especially at the operating point of the inverter representing the worst case scenario regarding EMC performance. To support this conclusion, an AC simulation of a single-phase common-mode equivalent circuit of the system is presented. The resonances occurring in the noise spectrum and its overall shape are explained by the simulation within the frequency range of 100 kHz to 110 MHz. In addition, CY capacitors are used as common-mode filter elements. Based on the validated simulation model, the influence of the filter capacitors and their parasitic inductances are investigated.\",\"PeriodicalId\":412708,\"journal\":{\"name\":\"2015 IEEE International Symposium on Electromagnetic Compatibility (EMC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Electromagnetic Compatibility (EMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.2015.7256246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Electromagnetic Compatibility (EMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2015.7256246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文介绍了对汽车逆变器在元件级EMC测试装置中使用非屏蔽电缆的传导辐射的调查结果。研究的主要目标是深入了解线阻抗稳定网络中干扰电压频谱的形状。为了实现这一目标,共模电流被确定为主要噪声电流,特别是在逆变器的工作点,这代表了有关EMC性能的最坏情况。为了支持这一结论,给出了系统单相共模等效电路的交流仿真。在100 kHz至110 MHz的频率范围内,通过仿真解释了噪声谱中的共振及其整体形状。此外,CY电容器用作共模滤波元件。在验证的仿真模型基础上,研究了滤波电容及其寄生电感的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding conducted emissions from an automotive inverter using a common-mode model
This contribution presents results from an investigation into conducted emissions of an automotive inverter in a component level EMC test setup with unshielded cables. The primary goal of the investigation is to develop a profound understanding of the shape of the disturbance voltage's frequency spectrum at the line impedance stabilization network. Complying with that objective, common-mode currents are identified as the dominating noise currents, especially at the operating point of the inverter representing the worst case scenario regarding EMC performance. To support this conclusion, an AC simulation of a single-phase common-mode equivalent circuit of the system is presented. The resonances occurring in the noise spectrum and its overall shape are explained by the simulation within the frequency range of 100 kHz to 110 MHz. In addition, CY capacitors are used as common-mode filter elements. Based on the validated simulation model, the influence of the filter capacitors and their parasitic inductances are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信