使用三重网络的无监督车辆再识别

Pedro A. Marín-Reyes, Andrea Palazzi, Luca Bergamini, S. Calderara, J. Lorenzo-Navarro, R. Cucchiara
{"title":"使用三重网络的无监督车辆再识别","authors":"Pedro A. Marín-Reyes, Andrea Palazzi, Luca Bergamini, S. Calderara, J. Lorenzo-Navarro, R. Cucchiara","doi":"10.1109/CVPRW.2018.00030","DOIUrl":null,"url":null,"abstract":"Vehicle re-identification plays a major role in modern smart surveillance systems. Specifically, the task requires the capability to predict the identity of a given vehicle, given a dataset of known associations, collected from different views and surveillance cameras. Generally, it can be cast as a ranking problem: given a probe image of a vehicle, the model needs to rank all database images based on their similarities w.r.t the probe image. In line with recent research, we devise a metric learning model that employs a supervision based on local constraints. In particular, we leverage pairwise and triplet constraints for training a network capable of assigning a high degree of similarity to samples sharing the same identity, while keeping different identities distant in feature space. Eventually, we show how vehicle tracking can be exploited to automatically generate a weakly labelled dataset that can be used to train the deep network for the task of vehicle re-identification. Learning and evaluation is carried out on the NVIDIA AI city challenge videos.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"430 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Unsupervised Vehicle Re-identification Using Triplet Networks\",\"authors\":\"Pedro A. Marín-Reyes, Andrea Palazzi, Luca Bergamini, S. Calderara, J. Lorenzo-Navarro, R. Cucchiara\",\"doi\":\"10.1109/CVPRW.2018.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle re-identification plays a major role in modern smart surveillance systems. Specifically, the task requires the capability to predict the identity of a given vehicle, given a dataset of known associations, collected from different views and surveillance cameras. Generally, it can be cast as a ranking problem: given a probe image of a vehicle, the model needs to rank all database images based on their similarities w.r.t the probe image. In line with recent research, we devise a metric learning model that employs a supervision based on local constraints. In particular, we leverage pairwise and triplet constraints for training a network capable of assigning a high degree of similarity to samples sharing the same identity, while keeping different identities distant in feature space. Eventually, we show how vehicle tracking can be exploited to automatically generate a weakly labelled dataset that can be used to train the deep network for the task of vehicle re-identification. Learning and evaluation is carried out on the NVIDIA AI city challenge videos.\",\"PeriodicalId\":150600,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"430 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2018.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

车辆再识别在现代智能监控系统中占有重要地位。具体来说,这项任务需要能够预测给定车辆的身份,给定已知关联的数据集,从不同的视角和监控摄像头收集。一般来说,它可以被看作是一个排序问题:给定一个车辆的探测图像,模型需要根据它们与探测图像的相似度对所有数据库图像进行排序。根据最近的研究,我们设计了一个度量学习模型,该模型采用基于局部约束的监督。特别是,我们利用成对和三重约束来训练一个网络,该网络能够为具有相同身份的样本分配高度相似性,同时在特征空间中保持不同身份的距离。最后,我们展示了如何利用车辆跟踪来自动生成弱标记数据集,该数据集可用于训练深度网络以完成车辆重新识别的任务。对NVIDIA AI城市挑战视频进行学习和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Vehicle Re-identification Using Triplet Networks
Vehicle re-identification plays a major role in modern smart surveillance systems. Specifically, the task requires the capability to predict the identity of a given vehicle, given a dataset of known associations, collected from different views and surveillance cameras. Generally, it can be cast as a ranking problem: given a probe image of a vehicle, the model needs to rank all database images based on their similarities w.r.t the probe image. In line with recent research, we devise a metric learning model that employs a supervision based on local constraints. In particular, we leverage pairwise and triplet constraints for training a network capable of assigning a high degree of similarity to samples sharing the same identity, while keeping different identities distant in feature space. Eventually, we show how vehicle tracking can be exploited to automatically generate a weakly labelled dataset that can be used to train the deep network for the task of vehicle re-identification. Learning and evaluation is carried out on the NVIDIA AI city challenge videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信