驾驶员活动识别的动态交互图

Manuel Martin, M. Voit, R. Stiefelhagen
{"title":"驾驶员活动识别的动态交互图","authors":"Manuel Martin, M. Voit, R. Stiefelhagen","doi":"10.1109/ITSC45102.2020.9294520","DOIUrl":null,"url":null,"abstract":"The drivers activities and the resulting distraction is relevant for all levels of vehicle automation. It is especially important for take-over scenarios in partially automated vehicles. To this end we investigate graph neuronal networks for pose based driver activity recognition. We focus on integrating additional input modalities like interior elements and objects and investigate how this data can be integrated in an activity recognition model. We test our approach on the Drive & Act dataset [1]. To this end we densely annotate and publish the bounding boxes of the dynamic objects contained in the dataset. Our results show that adding the additional input modalities boosts the recognition results of classes related to interior elements and objects by a large margin closing the gap to popular image based methods.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic Interaction Graphs for Driver Activity Recognition\",\"authors\":\"Manuel Martin, M. Voit, R. Stiefelhagen\",\"doi\":\"10.1109/ITSC45102.2020.9294520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The drivers activities and the resulting distraction is relevant for all levels of vehicle automation. It is especially important for take-over scenarios in partially automated vehicles. To this end we investigate graph neuronal networks for pose based driver activity recognition. We focus on integrating additional input modalities like interior elements and objects and investigate how this data can be integrated in an activity recognition model. We test our approach on the Drive & Act dataset [1]. To this end we densely annotate and publish the bounding boxes of the dynamic objects contained in the dataset. Our results show that adding the additional input modalities boosts the recognition results of classes related to interior elements and objects by a large margin closing the gap to popular image based methods.\",\"PeriodicalId\":394538,\"journal\":{\"name\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC45102.2020.9294520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

驾驶员的活动和由此产生的分心与所有级别的车辆自动化相关。这对于部分自动化车辆的接管场景尤其重要。为此,我们研究了基于姿态的驾驶员活动识别的图神经元网络。我们专注于集成额外的输入模式,如内部元素和对象,并研究如何将这些数据集成到活动识别模型中。我们在Drive & Act数据集[1]上测试了我们的方法。为此,我们密集地标注和发布数据集中包含的动态对象的边界框。我们的研究结果表明,添加额外的输入模态大大提高了与内部元素和物体相关的类别的识别结果,缩小了与流行的基于图像的方法的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Interaction Graphs for Driver Activity Recognition
The drivers activities and the resulting distraction is relevant for all levels of vehicle automation. It is especially important for take-over scenarios in partially automated vehicles. To this end we investigate graph neuronal networks for pose based driver activity recognition. We focus on integrating additional input modalities like interior elements and objects and investigate how this data can be integrated in an activity recognition model. We test our approach on the Drive & Act dataset [1]. To this end we densely annotate and publish the bounding boxes of the dynamic objects contained in the dataset. Our results show that adding the additional input modalities boosts the recognition results of classes related to interior elements and objects by a large margin closing the gap to popular image based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信