独立文本说话人识别的判别局部信息距离保持投影

Liang He, Jia Li
{"title":"独立文本说话人识别的判别局部信息距离保持投影","authors":"Liang He, Jia Li","doi":"10.1109/ISCSLP.2012.6423466","DOIUrl":null,"url":null,"abstract":"A novel method is presented based on a statistical manifold for text-independent speaker recognition. After feature extraction, speaker recognition becomes a sequence classification problem. By discarding time information, the core task is the comparison of multiple sample sets. Each set is assumed to be governed by a probability density function (PDF). We estimate the PDFs and place the estimated statistical models on a statistical manifold. Fisher information distance is applied to compute distance between adjacent PDFs. Discriminant local preserving projection is used to push adjacent PDFs which belong to different classes apart to further improve the recognition accuracy. Experiments were carried out on the NIST SRE08 tel-tel database. Our presented method gave an excellent performance.","PeriodicalId":186099,"journal":{"name":"2012 8th International Symposium on Chinese Spoken Language Processing","volume":"482 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discriminant local information distance preserving projection for text-independent speaker recognition\",\"authors\":\"Liang He, Jia Li\",\"doi\":\"10.1109/ISCSLP.2012.6423466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method is presented based on a statistical manifold for text-independent speaker recognition. After feature extraction, speaker recognition becomes a sequence classification problem. By discarding time information, the core task is the comparison of multiple sample sets. Each set is assumed to be governed by a probability density function (PDF). We estimate the PDFs and place the estimated statistical models on a statistical manifold. Fisher information distance is applied to compute distance between adjacent PDFs. Discriminant local preserving projection is used to push adjacent PDFs which belong to different classes apart to further improve the recognition accuracy. Experiments were carried out on the NIST SRE08 tel-tel database. Our presented method gave an excellent performance.\",\"PeriodicalId\":186099,\"journal\":{\"name\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"volume\":\"482 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSLP.2012.6423466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP.2012.6423466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于统计流形的独立文本说话人识别方法。经过特征提取,说话人识别成为一个序列分类问题。通过丢弃时间信息,核心任务是多个样本集的比较。假设每个集合都由概率密度函数(PDF)控制。我们估计pdf并将估计的统计模型放在统计流形上。Fisher信息距离用于计算相邻pdf之间的距离。采用判别局部保留投影将相邻的不同类别的pdf推开,进一步提高识别精度。实验在NIST的SRE08电话-电话数据库上进行。我们提出的方法取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminant local information distance preserving projection for text-independent speaker recognition
A novel method is presented based on a statistical manifold for text-independent speaker recognition. After feature extraction, speaker recognition becomes a sequence classification problem. By discarding time information, the core task is the comparison of multiple sample sets. Each set is assumed to be governed by a probability density function (PDF). We estimate the PDFs and place the estimated statistical models on a statistical manifold. Fisher information distance is applied to compute distance between adjacent PDFs. Discriminant local preserving projection is used to push adjacent PDFs which belong to different classes apart to further improve the recognition accuracy. Experiments were carried out on the NIST SRE08 tel-tel database. Our presented method gave an excellent performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信