空间数据karhunen - lo展开的数值方法

Juan Hu, Hao Zhang
{"title":"空间数据karhunen - lo<e:1>展开的数值方法","authors":"Juan Hu, Hao Zhang","doi":"10.1515/eqc-2015-6005","DOIUrl":null,"url":null,"abstract":"Abstract With the development of technology, a large amount of spatial data are usually observed in many applications. These massive spatial data impose a challenge to the traditional spatial data analysis primarily because of the large covariance matrix. One way to overcome the computation burden is to utilize a low rank model. The optimal low rank model is provided by the Karhunen–Loève (KL) expansion of the spatial process. However, the inference and prediction of the spatial data require an efficient algorithm for the KL expansion. In this paper, we compare four algorithms that have been proposed to numerically obtain the KL expansion. It is found that the Gaussian quadrature method outperforms the others for spatial processes.","PeriodicalId":360039,"journal":{"name":"Economic Quality Control","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Numerical Methods of Karhunen–Loève Expansion for Spatial Data\",\"authors\":\"Juan Hu, Hao Zhang\",\"doi\":\"10.1515/eqc-2015-6005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With the development of technology, a large amount of spatial data are usually observed in many applications. These massive spatial data impose a challenge to the traditional spatial data analysis primarily because of the large covariance matrix. One way to overcome the computation burden is to utilize a low rank model. The optimal low rank model is provided by the Karhunen–Loève (KL) expansion of the spatial process. However, the inference and prediction of the spatial data require an efficient algorithm for the KL expansion. In this paper, we compare four algorithms that have been proposed to numerically obtain the KL expansion. It is found that the Gaussian quadrature method outperforms the others for spatial processes.\",\"PeriodicalId\":360039,\"journal\":{\"name\":\"Economic Quality Control\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economic Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2015-6005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2015-6005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随着技术的发展,在许多应用中通常需要观测到大量的空间数据。这些海量空间数据的协方差矩阵较大,对传统的空间数据分析提出了挑战。一种克服计算负担的方法是利用低秩模型。通过空间过程的karhunen - lo (KL)展开,给出了最优的低阶模型。然而,空间数据的推断和预测需要一种有效的KL扩展算法。在本文中,我们比较了已经提出的四种算法来数值获得KL展开。研究发现,高斯正交法在空间过程中优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Methods of Karhunen–Loève Expansion for Spatial Data
Abstract With the development of technology, a large amount of spatial data are usually observed in many applications. These massive spatial data impose a challenge to the traditional spatial data analysis primarily because of the large covariance matrix. One way to overcome the computation burden is to utilize a low rank model. The optimal low rank model is provided by the Karhunen–Loève (KL) expansion of the spatial process. However, the inference and prediction of the spatial data require an efficient algorithm for the KL expansion. In this paper, we compare four algorithms that have been proposed to numerically obtain the KL expansion. It is found that the Gaussian quadrature method outperforms the others for spatial processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信