fpga上任意梅森素数的高性能模块乘数自动生成

Philipp Koppermann, F. D. Santis, Johann Heyszl, G. Sigl
{"title":"fpga上任意梅森素数的高性能模块乘数自动生成","authors":"Philipp Koppermann, F. D. Santis, Johann Heyszl, G. Sigl","doi":"10.1109/HST.2017.7951794","DOIUrl":null,"url":null,"abstract":"Modular multiplication is a fundamental and performance determining operation in various public-key cryptosystems. High-performance modular multipliers on FPGAs are commonly realized by several small-sized multipliers, an adder tree for summing up the digit-products, and a reduction circuit. While small-sized multipliers are available in pre-fabricated high-speed DSP slices, the adder tree and the reduction circuit are implemented in standard logic. The latter operations represent the performance bottleneck to high-performance implementations. Previous works attempted to minimize the critical path of the adder tree by rearranging digit-products on digit-level. We report improved performance by regrouping digit-products on bit-level, while incorporating the reduction for Mersenne primes. Our approach leads to very fast modular multipliers, whose latency and throughput characteristics outperform all previous results. We formalize our approach and provide algorithms to automatically generate high-performance modular multipliers for arbitrary Mersenne primes from any small-sized multipliers.","PeriodicalId":190635,"journal":{"name":"2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic generation of high-performance modular multipliers for arbitrary mersenne primes on FPGAs\",\"authors\":\"Philipp Koppermann, F. D. Santis, Johann Heyszl, G. Sigl\",\"doi\":\"10.1109/HST.2017.7951794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modular multiplication is a fundamental and performance determining operation in various public-key cryptosystems. High-performance modular multipliers on FPGAs are commonly realized by several small-sized multipliers, an adder tree for summing up the digit-products, and a reduction circuit. While small-sized multipliers are available in pre-fabricated high-speed DSP slices, the adder tree and the reduction circuit are implemented in standard logic. The latter operations represent the performance bottleneck to high-performance implementations. Previous works attempted to minimize the critical path of the adder tree by rearranging digit-products on digit-level. We report improved performance by regrouping digit-products on bit-level, while incorporating the reduction for Mersenne primes. Our approach leads to very fast modular multipliers, whose latency and throughput characteristics outperform all previous results. We formalize our approach and provide algorithms to automatically generate high-performance modular multipliers for arbitrary Mersenne primes from any small-sized multipliers.\",\"PeriodicalId\":190635,\"journal\":{\"name\":\"2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HST.2017.7951794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2017.7951794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

模乘法运算是各种公开密钥密码系统中决定性能的基本运算。fpga上的高性能模块化乘法器通常由几个小型乘法器、一个用于求和数字乘积的加法器树和一个约简电路来实现。虽然小型乘法器可用于预制高速DSP片,但加法器树和降阶电路采用标准逻辑实现。后一种操作是高性能实现的性能瓶颈。先前的研究试图通过在数位水平上重新排列数位积来最小化加法器树的关键路径。我们报告通过在位级上重新分组数字产品来提高性能,同时结合梅森素数的减少。我们的方法导致非常快的模块化乘法器,其延迟和吞吐量特性优于所有以前的结果。我们形式化了我们的方法,并提供了算法,可以从任何小型乘数中自动生成任意梅森素数的高性能模块化乘数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic generation of high-performance modular multipliers for arbitrary mersenne primes on FPGAs
Modular multiplication is a fundamental and performance determining operation in various public-key cryptosystems. High-performance modular multipliers on FPGAs are commonly realized by several small-sized multipliers, an adder tree for summing up the digit-products, and a reduction circuit. While small-sized multipliers are available in pre-fabricated high-speed DSP slices, the adder tree and the reduction circuit are implemented in standard logic. The latter operations represent the performance bottleneck to high-performance implementations. Previous works attempted to minimize the critical path of the adder tree by rearranging digit-products on digit-level. We report improved performance by regrouping digit-products on bit-level, while incorporating the reduction for Mersenne primes. Our approach leads to very fast modular multipliers, whose latency and throughput characteristics outperform all previous results. We formalize our approach and provide algorithms to automatically generate high-performance modular multipliers for arbitrary Mersenne primes from any small-sized multipliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信