基于改进YOLOV5的疲劳驾驶检测

Guilu Wang
{"title":"基于改进YOLOV5的疲劳驾驶检测","authors":"Guilu Wang","doi":"10.1109/ACAIT56212.2022.10137969","DOIUrl":null,"url":null,"abstract":"Fatigue driving detection based on YOLOV5 object detection algorithm. YOLOV5N with fewer parameters is selected as the basic model, and the large object detection layer in YOLOV5N is removed according to the object size clustering results, which reduces the parameters and improves the detection results. SAM is introduced to improve the ability of the backbone network to extract key features, and the convolution kernel in SAM is expanded to provide a wider receptive field for the model, in exchange for better detection results with a small increase in parameters. Referring to BiFPN, the Neck part of YOLOV5N is modified to provide more diverse fusion methods for multi-scale features. The precision, recall and mAP of the improved model are higher than those of YOLOV5N.","PeriodicalId":398228,"journal":{"name":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue Driving Detection Based on Improved YOLOV5\",\"authors\":\"Guilu Wang\",\"doi\":\"10.1109/ACAIT56212.2022.10137969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fatigue driving detection based on YOLOV5 object detection algorithm. YOLOV5N with fewer parameters is selected as the basic model, and the large object detection layer in YOLOV5N is removed according to the object size clustering results, which reduces the parameters and improves the detection results. SAM is introduced to improve the ability of the backbone network to extract key features, and the convolution kernel in SAM is expanded to provide a wider receptive field for the model, in exchange for better detection results with a small increase in parameters. Referring to BiFPN, the Neck part of YOLOV5N is modified to provide more diverse fusion methods for multi-scale features. The precision, recall and mAP of the improved model are higher than those of YOLOV5N.\",\"PeriodicalId\":398228,\"journal\":{\"name\":\"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACAIT56212.2022.10137969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACAIT56212.2022.10137969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于YOLOV5目标检测算法的疲劳驾驶检测。选择参数较少的YOLOV5N作为基本模型,根据对象大小聚类结果去除YOLOV5N中的大目标检测层,减少了参数,提高了检测结果。为了提高骨干网提取关键特征的能力,引入了SAM,并对SAM中的卷积核进行了扩展,为模型提供了更广泛的接受域,从而在参数增加较少的情况下获得了更好的检测结果。在借鉴BiFPN的基础上,对YOLOV5N的Neck部分进行了改进,为多尺度特征提供了更多样化的融合方法。改进模型的准确率、召回率和mAP值均高于YOLOV5N模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue Driving Detection Based on Improved YOLOV5
Fatigue driving detection based on YOLOV5 object detection algorithm. YOLOV5N with fewer parameters is selected as the basic model, and the large object detection layer in YOLOV5N is removed according to the object size clustering results, which reduces the parameters and improves the detection results. SAM is introduced to improve the ability of the backbone network to extract key features, and the convolution kernel in SAM is expanded to provide a wider receptive field for the model, in exchange for better detection results with a small increase in parameters. Referring to BiFPN, the Neck part of YOLOV5N is modified to provide more diverse fusion methods for multi-scale features. The precision, recall and mAP of the improved model are higher than those of YOLOV5N.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信