通过删除一些边缘来破坏双色p3

Niels Grüttemeier, Christian Komusiewicz, Jannik Schestag, Frank Sommer
{"title":"通过删除一些边缘来破坏双色p3","authors":"Niels Grüttemeier, Christian Komusiewicz, Jannik Schestag, Frank Sommer","doi":"10.46298/dmtcs.6108","DOIUrl":null,"url":null,"abstract":"We introduce and study the Bicolored $P_3$ Deletion problem defined as\nfollows. The input is a graph $G=(V,E)$ where the edge set $E$ is partitioned\ninto a set $E_r$ of red edges and a set $E_b$ of blue edges. The question is\nwhether we can delete at most $k$ edges such that $G$ does not contain a\nbicolored $P_3$ as an induced subgraph. Here, a bicolored $P_3$ is a path on\nthree vertices with one blue and one red edge. We show that Bicolored $P_3$\nDeletion is NP-hard and cannot be solved in $2^{o(|V|+|E|)}$ time on\nbounded-degree graphs if the ETH is true. Then, we show that Bicolored $P_3$\nDeletion is polynomial-time solvable when $G$ does not contain a bicolored\n$K_3$, that is, a triangle with edges of both colors. Moreover, we provide a\npolynomial-time algorithm for the case that $G$ contains no blue $P_3$, red\n$P_3$, blue $K_3$, and red $K_3$. Finally, we show that Bicolored $P_3$\nDeletion can be solved in $ O(1.84^k\\cdot |V| \\cdot |E|)$ time and that it\nadmits a kernel with $ O(k\\Delta\\min(k,\\Delta))$ vertices, where $\\Delta$ is\nthe maximum degree of $G$.\n\n Comment: 25 pages","PeriodicalId":436783,"journal":{"name":"Conference on Computability in Europe","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Destroying Bicolored P3s by Deleting Few Edges\",\"authors\":\"Niels Grüttemeier, Christian Komusiewicz, Jannik Schestag, Frank Sommer\",\"doi\":\"10.46298/dmtcs.6108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and study the Bicolored $P_3$ Deletion problem defined as\\nfollows. The input is a graph $G=(V,E)$ where the edge set $E$ is partitioned\\ninto a set $E_r$ of red edges and a set $E_b$ of blue edges. The question is\\nwhether we can delete at most $k$ edges such that $G$ does not contain a\\nbicolored $P_3$ as an induced subgraph. Here, a bicolored $P_3$ is a path on\\nthree vertices with one blue and one red edge. We show that Bicolored $P_3$\\nDeletion is NP-hard and cannot be solved in $2^{o(|V|+|E|)}$ time on\\nbounded-degree graphs if the ETH is true. Then, we show that Bicolored $P_3$\\nDeletion is polynomial-time solvable when $G$ does not contain a bicolored\\n$K_3$, that is, a triangle with edges of both colors. Moreover, we provide a\\npolynomial-time algorithm for the case that $G$ contains no blue $P_3$, red\\n$P_3$, blue $K_3$, and red $K_3$. Finally, we show that Bicolored $P_3$\\nDeletion can be solved in $ O(1.84^k\\\\cdot |V| \\\\cdot |E|)$ time and that it\\nadmits a kernel with $ O(k\\\\Delta\\\\min(k,\\\\Delta))$ vertices, where $\\\\Delta$ is\\nthe maximum degree of $G$.\\n\\n Comment: 25 pages\",\"PeriodicalId\":436783,\"journal\":{\"name\":\"Conference on Computability in Europe\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computability in Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.6108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computability in Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.6108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们介绍并研究了定义如下的双色$P_3$删除问题。输入是一个图形$G=(V,E)$,其中边集$E$被划分为红色边集$E_r$和蓝色边集$E_b$。问题是我们是否可以最多删除$k$条边,使得$G$不包含无颜色的$P_3$作为诱导子图。在这里,双色的$P_3$是一个有一个蓝色和一个红色边的三个顶点的路径。我们证明了如果ETH为真,biccolor$P_3$删除是np困难的,并且不能在$2^{o(|V|+|E|)}$时间有界度图中解决。然后,我们证明了当$G$不包含一个双色的$K_3$,即一个边有两种颜色的三角形时,双色的$P_3$删除是多项式时间可解的。此外,我们还提供了$G$不包含蓝色$P_3$、红色$P_3$、蓝色$K_3$和红色$K_3$的多项式时间算法。最后,我们证明了biccolor$P_3$删除可以在$ O(1.84^k\cdot |V| \cdot |E|)$时间内解决,并且它允许具有$ O(k\Delta\min(k,\Delta))$顶点的内核,其中$\Delta$是$G$的最大度。评论:25页
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Destroying Bicolored P3s by Deleting Few Edges
We introduce and study the Bicolored $P_3$ Deletion problem defined as follows. The input is a graph $G=(V,E)$ where the edge set $E$ is partitioned into a set $E_r$ of red edges and a set $E_b$ of blue edges. The question is whether we can delete at most $k$ edges such that $G$ does not contain a bicolored $P_3$ as an induced subgraph. Here, a bicolored $P_3$ is a path on three vertices with one blue and one red edge. We show that Bicolored $P_3$ Deletion is NP-hard and cannot be solved in $2^{o(|V|+|E|)}$ time on bounded-degree graphs if the ETH is true. Then, we show that Bicolored $P_3$ Deletion is polynomial-time solvable when $G$ does not contain a bicolored $K_3$, that is, a triangle with edges of both colors. Moreover, we provide a polynomial-time algorithm for the case that $G$ contains no blue $P_3$, red $P_3$, blue $K_3$, and red $K_3$. Finally, we show that Bicolored $P_3$ Deletion can be solved in $ O(1.84^k\cdot |V| \cdot |E|)$ time and that it admits a kernel with $ O(k\Delta\min(k,\Delta))$ vertices, where $\Delta$ is the maximum degree of $G$. Comment: 25 pages
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信