流中时间最优状态约束控制问题的直接数值解

R. Chertovskih, F. Pereira
{"title":"流中时间最优状态约束控制问题的直接数值解","authors":"R. Chertovskih, F. Pereira","doi":"10.1109/CoDIT49905.2020.9263851","DOIUrl":null,"url":null,"abstract":"We consider the following time-optimal control problem with state constraints: compute minimal travelling time of a controllable object moving in a prescribed flow field in a bounded domain between two given points. The optimal control problem is solved numerically using two direct methods – interior-point line search filter method and sequential quadratic programming. Five sample flows are considered, and computational properties of the corresponding simulations are measured and discussed.","PeriodicalId":355781,"journal":{"name":"2020 7th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct numerical solution of a time-optimal state-constrained control problem in a flow\",\"authors\":\"R. Chertovskih, F. Pereira\",\"doi\":\"10.1109/CoDIT49905.2020.9263851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the following time-optimal control problem with state constraints: compute minimal travelling time of a controllable object moving in a prescribed flow field in a bounded domain between two given points. The optimal control problem is solved numerically using two direct methods – interior-point line search filter method and sequential quadratic programming. Five sample flows are considered, and computational properties of the corresponding simulations are measured and discussed.\",\"PeriodicalId\":355781,\"journal\":{\"name\":\"2020 7th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"volume\":\"243 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoDIT49905.2020.9263851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT49905.2020.9263851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑带状态约束的时间最优控制问题:在给定两点之间的有界区域内,计算在规定流场中运动的可控物体的最小运动时间。采用内点线搜索滤波法和顺序二次规划法两种直接的方法对最优控制问题进行了数值求解。考虑了五种样流,并对相应的模拟计算特性进行了测试和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct numerical solution of a time-optimal state-constrained control problem in a flow
We consider the following time-optimal control problem with state constraints: compute minimal travelling time of a controllable object moving in a prescribed flow field in a bounded domain between two given points. The optimal control problem is solved numerically using two direct methods – interior-point line search filter method and sequential quadratic programming. Five sample flows are considered, and computational properties of the corresponding simulations are measured and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信