{"title":"保角网是分解代数","authors":"A. Henriques","doi":"10.1090/pspum/098/01749","DOIUrl":null,"url":null,"abstract":"We prove that conformal nets of finite index are an instance of the notion of a factorization algebra. This result is an ingredient in our proof that, for $G=SU(n)$, the Drinfel'd center of the category of positive energy representations of the based loop group is equivalent to the category of positive energy representations of the free loop group.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Conformal nets are factorization\\n algebras\",\"authors\":\"A. Henriques\",\"doi\":\"10.1090/pspum/098/01749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that conformal nets of finite index are an instance of the notion of a factorization algebra. This result is an ingredient in our proof that, for $G=SU(n)$, the Drinfel'd center of the category of positive energy representations of the based loop group is equivalent to the category of positive energy representations of the free loop group.\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/pspum/098/01749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/pspum/098/01749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that conformal nets of finite index are an instance of the notion of a factorization algebra. This result is an ingredient in our proof that, for $G=SU(n)$, the Drinfel'd center of the category of positive energy representations of the based loop group is equivalent to the category of positive energy representations of the free loop group.